Электропроводность полупроводников
Феномен проводимости в твердом теле с точки зрения квантовой физики. Зонная теория электропроводности для различных твердых материалов. Функция Ферми-Дирака для равновесного состояния электронов. Разница в проводимости полупроводников и кристаллов.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | лекция |
Язык | русский |
Дата добавления | 01.09.2013 |
Размер файла | 148,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Лекция
Электропроводность полупроводников
Электрический ток - это перенос электрических зарядов. Известно, что электрические заряды присущи элементарным частицам. Причём бывают положительные и отрицательные заряды. Так, атомы состоят из положительно заряженных ядер и отрицательно заряженных электронов. Самый малый заряд у электрона. Электроны притягиваются к ядру. У ядра атома заряд больше, но он кратен заряду электрона. В целом атомы нейтральны, так как число электронов равно заряду ядра. Но иногда электрон может быть оторван от атома. Обычно это легко делается при высоких температурах. Например, в радиолампе разогретый катод испускает электроны (котрые в 2000 раз легче атомов), и они участвуют в переносе тока от катода к аноду.
В твёрдых телах ситуация более сложная, так как электроны несвободны. Известно, что в отдельном атоме электрон находится в поле притяжения положительного заряда. Это можно представить себе как потенциальную яму, см. рис. слева. На рис. показана зависимость энергии от координаты для одного атома слева и для кристалла справа. В случае одного атома это просто уменьшение энергии от нуля в бесконечности до минус бесконечности в центре ядра. В потенциальной яме в случае очень малых частиц, когда применимы законы квантовой механики, всё не так, как в классической механике. Существует дискретный ряд разрешённых энергий, с которыми могут существовать электроны в атоме. Причём по принципу Паули на каждом энергетическом уровне может находиться только один электрон. А в случае кристалла, когда атомы расположены строго периодически и на очень близком расстоянии друг от друга, картина принимает вид как на рис. справа (здесь, конечно, изображена одномерная ситуация, а не трёхмерная, для простоты). Видно, что из-за перекрытия потенциальных ям их высота понизилась, за исключением крайних потенциальных ям. Квантовая механика говорит, что в случае очень малых расстояний частицы (в данном случае электроны) могут преодолевать потенциальный барьер, не получая дополнительной энергии. Но вероятность того, что они преодолеют этот барьер, обратно пропорциональна ширине и высоте барьера, и даже в экспоненциальной форме. Поэтому только на атомном уровне сказывается квантовый эффект, который называется туннельным эффектом.
В результате электрон без всякой дополнительной энергии может проникнуть из одного атома в другой, соседний, затем в третий и т.д. Другими словами, электроны обобществляются. Но принцип Паули запрещает находиться на одном энергетическом уровне более чем одному электрону. Это приводит к тому, что каждый энергетический уровень в атоме расщепляется на энергетическую зону, которая состоит из такого числа уровней, сколько атомов в данном куске кристалла. Это очень много, в одном см3 атомов примерно 1023 . Приближённо можно считать, что энергетические зоны сплошные.
Число зон в кристалле должно соответствовать числу уровней в атоме. Но ширина зоны зависит от глубины уровня. Чем он глубже, тем меньше ширина уровня, потому что тем больше преодолеваемый в туннельном эффекте барьер. Самые глубокие уровни практически не расщепляются. Самые верхние заполненные уровни расщепляются больше всего, они имеют наибольшую ширину. В полупроводниках наиболее интересными являются верхняя заполненная зона и следующая пустая зона. Поэтому потенциальные ямы атомов обычно не рисуют, а из зон рисуют только эти две:
Символом Ev обозначают верхнюю границу последней заполненной зоны, потолок валентной зоны, а символом Ec - нижнюю границу первой пустой зоны, дно зоны проводимости. Символом Eg = Ec - Ev обозначается ширина запрещённой зоны.
Итак, мы видим, что в твёрдом теле есть заряженные частицы - электроны, и они могут двигаться по твёрдому телу. Оказывается, всё не так просто. Так например, многие твёрдые тела являются металлами, и они хорошо проводят ток; другая ситуация с диэлектриками, которые плохо проводит ток. Есть ещё и полупроводники, занимающие среднее положение между металлами и диэлектриками. Разобраться в этом позволяет зонная теория электропроводности.
В диэлектриках электронов столько, что они полностью заполняют валентную зону, а зона проводимости пуста, там электронов нет. Поэтому зона проводимости ток не проводит, а валентная зона может ток проводить, но не проводит, потому что все состояния электронов в точности симметричны, и если есть состояние с импульсор р, то найдётся и состояние с импульсом -р, каждое из этих состояний переносит ток, но направления этих токов противоположны, и в сумме переносимый ток равен нулю. Если валентная зона полностью заполнена, то каждый электрон проводит свой маленький ток, а весь кристалл никакого тока не проводит.
Иная картина наблюдается в металлах, где электронов столько, что они заполняют валентную зону только наполовину. При нулевой температуре (по Кельвину, т.е. -273оС) все нижние состояния заполнены электронами, а все верхние - пустые. Но расстояния между состояниями очень малы, и малейшее возмущение системы, например, приложение маленького напряжения может вызвать смещение электронов из равновесного состояния, и нарушить симметрию в распределении электронов по скоростям. Таким образом довольно легко возникает электрический ток, т.е. имеется электропроводность.
При более высоких температурах возникает некоторое размытие электронов по состояниям, а именно имеется функция распределения Ферми-Дирака:
F(E) - вероятность занятия уровня с энергией E электроном, EF - некая константа, имеющая размерность энергии и называемая уровнем Ферми. Эта функция выглядит следующим образом:
Здесь функция F располагается горизонтально, а её аргумент E - вертикально. Левая сплошная линия - F(E)=0; правая пунктирная линия - F(E)=1. При Е>E2 вероятность заполнения состояний электронами равна нулю - тока нет. При E<E1 F(E)=1 , все состояния заполнены и эти электроны в силу симметрии кристалла тоже не проводит ток. А вот состояния между пунктирными линиями заполнены не все, поэтому эти электроны могут проводить ток. Именно поэтому металлы хорошо проводят электричество.
Иначе обстоит дело с диэлектриками и полупроводниками. Электронов хватает только для того, чтобы заполнить несколько зон, в том числе и валентную, а остальные, в том числе и зона проводимости, оказываются пустыми. Ясно, что пустые зоны электричества не проводят. Но не проводят его и полностью заполненные, так как в силу симметрии кристалла все маленькие токи уравновешивают друг друга.
Но это справедливо только при нулевой температуре по Кельвину (-2730С). При более высоких температурах, и тем более при комнатных температурах, тепловые колебания атомов кристалла часть своей энергии передают электронам, что приводит к распределению по энергиям согласно функции Ферми-Дирака. Часть электронов (малая) приобретает энергию, достаточную для того, чтобы преодолеть запрещённую зону и попасть в следующую зону - зону проводимости. Эта ситуация иллюстрируется рисунком:
На левом рис. представлена плотность состояний в зависимости от Е. При нулевой энергии она очень мала, точнее равна 2 из-за того, что спин электрона равен +/- ?, т.е. в одном состоянии будет два электрона с разными спинами. С ростом энергии плотность состояний пропорциональна квадрату энергии, отсчитанной от уровня Ec (или Ev -E для валентной зоны).
На втором рис. представлена фукция Ферми-Дирака. А на следующем рис. представлено произведение этих двух фукций, которое и представляет собой зависимость конценрации электронов от энергии. Видно, что электронов в зоне проводимости мало, так как вероятность заполнения состояния существенно меньше 1. Значит, они могут двигаться практически как в вакууме, почти что не взаимодействуя друг с другом.
Совсем другое можно сказать о валентной зоне: здесь вероятность заполнения состояния практически равна 1, т.е. почти все состояния заполнены электронами. В этом случае трудно описать их движение, так как они практически всегда мешают друг другу, ведь электроны могут куда-то переместиться, только если там свободное состояние, а почти все состояния заполнены.
Поэтому договорились описывать состояния пустых мест - "дырок", которых мало (не путать с отверстиями). Они, дырки, могут двигаться как бы независимо, почти не сталкиваясь, и их движение можно тоже описывать довольно просто, так же, как и движение электронов в зоне проводимости. Их концентрация описывается произведением числа состояний на разницу между 1 и функцией Ферми-Дирака, см. третий рис. в валентной зоне.
На последнем рис. представлена зависимость энергии от координаты. На дне зоны проводимости есть некоторое количество электронов, у потолка валентной зоны есть некоторое количество дырок. Они, в отличие от электронов, имеют положительный заряд. Так как электроны рождаются при выходе из валентой зоны в зону проводимости электрона, количество их строго равно количеству дырок.
Функция Ферми-Дирака описывает равновесное состояние электронов.
Если при какой-то температуре (например комнатной) электронов нет, то будет происходить термогенерация электронов и дырок, и постепенно они распределятся по функции Ферми-Дирака. Скорость генерации зависит от температуры и от ширины запрещённой зоны и практически не зависит от концентрации электронов и дырок.
Есть также обратный процесс - рекомбинация электронов и дырок: предположим, что при случайном движении электрон встретился с дыркой. Электрон из зоны проводимости попадёт в какое-то состояние в валентной зоне, при этом куда-то выделится разноть энергий и разность импульсов, а электрон и дырки взаимоуничтожатся, аннигилируют, или, как говорят в электронике, рекомбинируют. Скорость этого процесса пропорциональна произведению пр, где п - концентрация электронов (обычно в см-3), и р - концентрация дырок (тоже в см-3).
Так как с ростом времени п и р растут при генерации электронов и дырок, этот процесс увеличивает скорость рекомбинации электронов и дырок, и в конце концов она становится равной скорости генерации.
Это означает достижение состояния, характеризующегося функций Ферми-Дирака. Таким образом мы видим, что генерация электронов и дырок всегда существует, и всегда существует рекомбинация, просто в равновесии они строго равны друг другу.
Концентрация электронов в зоне проводимости определяется формулой:
где NC - эффективная плотность состояний в зоне проводимости. Аналогично:
где NV - эффективная плотность состояний в валентой зоне. Мы знаем, что концентрации электроной и дырок одинаковы, т.е. n=p=ni , кроме того,
В этой формуле наиболее сильно всё зависит от членой в экспоненте. Так например, при комнатной температуре получается:
полупроводник электропроводность физика
Eg, эв |
ni, см-3 |
||
германий |
0,66 |
2*1013 |
|
кремний |
1,12 |
1010 |
|
арсенид галлия |
1,42 |
106 |
Хорошо видно, что при неболшьших изменениях ширины запрещённой зоны сильно изменяется концентрация носителей заряда. Так, у германия в одном кубическом см будет 2*1013 электронов или дырок, а у арсенида галлия - всего 106, т.е. в 10 миллионов раз меньше. Поэтому между диэлектриками и полупроводниками нет принципиальной разницы, а есть только количественная - у диэлектриков просто ширина запрещённой зоны немного шире 1,6 эв.
До сих пор мы имели ввиду абсолютно чистые кристаллы, не имеющие никаких примесей. На самом деле примеси есть и играют очень большую роль. Чистые полупроводники называются собственными, а с примесями - примесными. Рассмотрим наиболее простые примеси, отличающиеся от атомов кремния и германия на одну валентность (валентность кремния и германия 4).
Если имеется примесь с 5 электронами на внешней орбите, то в связях с кремнием или германием участвуют 4 электрона, а пятый - лишний, он легко отрывается от атома примеси и может свободно двигаться по кристаллу. Таким образом, в полупроводнике появляются лишние электроны, а вследствие рекомбинация количество дырок уменьшается. Происходит сдвиг уровня Ферми вверх, равновесные концентрации электронов и дырок меняются, а их произведение остаётся прежним, см. рис. При этом примесь, отдающая один электрон, дазывается донором.
При введении в полупроводник другой примеси, 3-х валентной, происходит иная ситуация: для четырёхкратной связи атомам полупроводника нехватает одного электрона. Поэтому полупроводник отдаёт один электрон, количество электронов уменьшается, а вследствие рекомбинации количество дырок растёт. Это иллюстрирует нижний рис. Такие примеси называются акцепторами.
Полупроводник с донорной примесью называется электронным, или полупроводником n - типа, а полупроводник с акцепторной примесью называется дырочным, или p - типа. Существенно, что большинство полупроводниковых приборов использует контакт полупроводников n- и p- типов, поэтому не стараются использовать чистые полупроводники, а наоборот, делают примесные полупроводники.
Теперь рассмотрим электропроводность зоны проводимости. Обычно свободный электрон описывается параболической дисперсионной кривой (зависимостью энергии от импульса), см рис.
Для электрона в кристалле всё выглядит по другому. Правда, вблизи нулевых значений импульса энергия тоже похожа на параболу, но вдали от нуля это скорее синусоида, т.е. периодическая кривая. Это отличие принципиальное. У свободного электрона при приложении электрического поля энергия его всё время растёт, а у электрона в кристалле она растёт только до некоторого значения, а затем падает.
Скорость электрона определяется производной от энергии по импульсу. У параболы скорость всё время растёт (здесь мы не рассматриваем теории относительности, и поэтому не учитываем конечности скорости электрона, которая не может быть больше скорости света).
У синусоиды скорость электрона в начале растёт, затем достигает максимума (самый крутой участок кривой) далее падает и достигает нуля, затем начинает изменяться в отрицательную сторону и т.д. Получается, что в следствие периодической зависимости дисперсионной кривой, скорость электрона должна всё время менять направление, и в целом он не должен двигаться.
Но это не так. В кристаллах очень много различных дефектов: электроны и дырки могут сталкиваться, фононы (тепловые колебания) могут взаимодействать с электронами и дырками, заряженные и нейтральные примеси влияют на движение электронов и дырок, фотоны и другие частицы также сталкиваются с ними. Всё это ограничивает свободное движение электронов. Получается, что только электрон немного разогнался, как тутже произошло его столкновение с чем-нибудь, и он потерял скорость.
Размещено на Allbest.ru
Подобные документы
Структура полупроводниковых материалов. Энергетические уровни и зоны. Электро- и примесная проводимость полупроводников. Виды движения носителей. Свойства электронно-дырочного перехода. Электропроводимость полупроводников в сильных электрических полях.
реферат [211,5 K], добавлен 29.06.2015Роль полупроводников в микро- и оптоэлектронике. Классификация полупроводниковых материалов. Диапазон электрических параметров различных полупроводников. Особые физико-химические свойства кремния. Применение германия в полупроводниковых приборах.
контрольная работа [1,0 M], добавлен 15.12.2015Электропроводимость полупроводников. Образование электронно-дырочной проводимости и ее свойства. Условное обозначение полупроводниковых приборов, классификация и основные параметры. Биполярные и МОП транзисторы. Светоизлучающие приборы и оптопары.
лекция [1,8 M], добавлен 17.02.2011- Исследование нелинейно-оптических процессов в неоднородных средах на основе пористых полупроводников
Кремний как материал современной электроники. Способы получения пористых полупроводников на примере кремния. Анализ процесса формирования, методов исследования, линейных и нелинейных процессов в неоднородных средах на основе пористых полупроводников.
дипломная работа [6,3 M], добавлен 18.07.2014 Строение твердых тел, их энергетические уровни. Оптические и электрические свойства полупроводников. Физические эффекты в твердых и газообразных диэлектриках, проводниках, магнитных и полупроводниковых материалах. Токи в электронно-дырочном переходе.
курс лекций [1,7 M], добавлен 11.01.2013Принципы работы полупроводниковых приборов. Физические основы электроники. Примесная электропроводность полупроводников. Подключение внешнего источника напряжения к переходу. Назначение выпрямительных диодов. Физические процессы в транзисторе, тиристоры.
лекция [4,4 M], добавлен 24.01.2014Электрофизические свойства полупроводниковых материалов, их применение для изготовления полупроводниковых приборов и устройств микроэлектроники. Основы зонной теории твердого тела. Энергетические зоны полупроводников. Физические основы наноэлектроники.
курсовая работа [3,1 M], добавлен 28.03.2016Определение удельного сопротивления полупроводникового образца с использованием четырехзондовой методики; а также типа проводимости по знаку термоЭДС с использованием термозонда с учетом и без учета поправочных коэффициентов; метрологические показатели.
практическая работа [6,9 M], добавлен 22.09.2011Классификация, температурные зависимости концентрации, подвижностей носителей заряда собственных и примесных полупроводников. Общая характеристика и основные сведения о кристаллическом строении полупроводниковых материалов Si и Ge, методика выращивания.
курсовая работа [1,5 M], добавлен 08.05.2009Cпособы точного решения уравнения Шредингера. Любое твердое тело представляет собой систему, состоящую из огромного числа ядер и ещё большего числа электронов. Обобществление электронов в кристалле. Электронные облака внутренних оболочек атома.
реферат [81,7 K], добавлен 10.12.2008