Оптико-акустические газоанализаторы

Измерение степени поглощения газом прерывистого потока инфракрасной радиации. Принципиальная схема газоанализатора. Сущность мacс-спектрометрического метода. Применение масс-спектрометров при анализе газовых смесей. Магнитные свойства некоторых газов.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид контрольная работа
Язык русский
Дата добавления 14.05.2013
Размер файла 317,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Оптико-акустические газоанализаторы

Оптико-акустические газоанализаторы по принятой классификации следует отнести к оптическим. Они основаны на измерении степени поглощения газом прерывистого потока инфракрасной радиации. Излучения инфракрасной области спектра поглощаются газами, молекулы которых состоят из двух или большего числа различных атомов и ионов. В теплоэнергетике их применяют для измерений СО2; СО; СН4.

Оптико-акустический эффект состоит в следующем: при воздействии на газ (находящийся в замкнутом объеме) прерывистым потоком инфракрасной радиации происходит пульсация температуры, а следовательно, и давления этого газа. Эта пульсация, воздействуя на микрофон, вызывает «звучание» газа.

На рис. приведена принципиальная схема газоанализатора. Инфракрасное излучение от двух источников 1 направляется по двум каналам (рабочему и сравнительному), проходя при этом через обтюратор 2, который шесть раз в секунду прерывает оба потока одновременно. Прерывистые потоки излучения проходят через фильтровые камеры 3 заполненные обычно данной смесью газа, из которой исключен анализируемый компонент. Наличие фильтровых камер обеспечивает уменьшение погрешности за счет возможного частичного наложения спектров поглощения анализируемой и не анализируемой составляющей газовой смеси. Далее поток радиации, направленный по рабочему каналу, проходит рабочую камеру 4, через которую непрерывно пропускается анализируемая газовая смесь. Анализируемая составляющая газа поглощает часть энергии, определяемой поглощающей способностью этого газа. Остаток лучистой энергии после отражения от пластины 5 поступает в правую область луче приемника 6. Лучистый поток, проходящий по сравнительному каналу, после фильтровой камеры 3 попадает в компенсационную камеру 8. Компенсационная камера заполнена анализируемой составляющей смеси. На поверхности этой камеры имеются окна из специального стекла (Li+F) 7 свободно пропускающего инфракрасные лучи. Внутри компенсационной камеры имеется отражательное зеркало, которое направляет лучистый поток в левую область луче приемника 6. Если в правую и левую области луче приемника поступают различные по величине прерывистые потоки излучения, то конденсаторный микрофон 15, помещенный в луче приемнике, создает звуковой сигнал, который после усиления усилителем 14 воздействует на реверсивный двигатель 12. Реверсивный двигатель с помощью редуктора 11 перемещает отражательное зеркало 13 до тех пор, пока поток сравнительного канала не уравняется с потоком, поступающим в луче приемник по рабочему каналу. При равенстве этих потоков звучание микрофона прекращается. Перемещение отражательного зеркала внутри уравнительной камеры вызывает изменение ее объема, т.е. изменение пути движения газа, что приводит к изменению поглощения лучистой энергии. Одновременно с редуктором перемещается движок реохорда 9 вторичного прибора 10.

Подобные газоанализаторы выпускают для диапазонов от 0?1% до 0?100% по объему анализируемого компонента с основной погрешностью от ±2,5 до ±5% от верхнего предела измерения.

Принципиальная схема оптико-акустического газоанализатора

Macс-спектрометрический метод

Сущность метода состоит в том, что ионизованные атомы и молекулы вещества разделяются по значениям отношения т/е (т - масса, е - заряд иона) и раздельно регистрируются. Из полученного масс-спектра определяются значения масс и концентраций компонентов в пробе АГС.

Macс-спектрометрический метод - один из важнейших и универсальных методов анализа состава, в котором используется основная характеристика вещества - масса молекулы или атома.

Количественный масс-спектрометрический анализ основан на пропорциональности интенсивности всех линий масс-спектра каждого из веществ пробы АГС его парциальному давлению в области ионизации:

Ii,j=Kijpi(20)

где Ii,j - значение пика тока ионов i-й массы, образовавшихся в результате ионизации данного компонента i пробы АГС; Kij - коэффициент пропорциональности, который определяется градуировкой масс-спектра по целевым компонентам; pi - парциальное давление j-того компонента пробы АГС в области ионизации.

Если в масс-спектре i-компонентной газовой смеси находится j-пиков ионного тока различных масс, то

т.е. имеем j уравнений с i неизвестными и с i, j коэффициентами, которые определяются, как было сказано выше, градуировкой масс-спектрометра по каждому компоненту. Так как обычно число уравнений (j) больше числа компонентов (i) пробы АГС, то система уравнений может быть решена разными способами.

Масс-спектрометрический анализ газовых смесей (в том числе кислородсодержащих смесей) состоит из следующих последовательных операций (стадий): ввода пробы АГС в источник ионов; получения ионов из атомов или молекул пробы АГС и формирования их в пучок или пакет; разделения ионного пучка или пакета по массам; улавливания и регистрации ионов - раздельного измерения интенсивности каждой составляющей ионного пучка; обработки результатов измерений.

Получение ионов из атомов и молекул пробы АГС - наиболее сложная стадия масс-спектрометрического анализа. Выбор способа ионизации и конструкции источника ионов зависит от многих факторов, в том числе от агрегатного состояния исследуемого вещества, смеси веществ или материалов, а также от их физико-химических свойств, требуемой точности анализа и т.д.

При использовании масс-спектрометрии в газовом анализе применяют следующие способы ионизации пробы АГС: электронный удар, фотоионизацию, химическую ионизацию, ионизацию в пламени, полевую ионизацию, поверхностную ионизацию

Образующиеся в области ионизации ионы формируются оптической системой источника в ионный пучок, или сгусток.

Полученные в источнике ионные пучки (сгустки) разделяются в электрических и магнитных полях или по времени пролета.

По способу разделения ионов масс-спектрометры делят на статические и динамические. В статических масс-спектрометрах используются постоянные или медленно изменяющиеся во времени электрические или магнитные поля. В динамических масс-спектрометрах ионы с различными массами разделяются в пространстве либо по времени пролета, лишенном электрических и магнитных полей, либо с высокочастотными электрическими полями.

Следующая стадия масс-спектрометрического анализа - улавливание и регистрация ионов. Приемные устройства играют важную роль в собирании разделенного продукта и в значительной степени определяют характеристики масс-спектрометра в целом.

По способу регистрации ионов масс-спектрометры делятся на масс-спектрографы, в которых одновременно регистрируются ионы всех или части компонентов пробы АГС фотографическим способом, и собственно на масс-спектрометры, в которых ионы регистрируются последовательным измерением ионного тока различных компонентов пробы АГС.

Применение масс-спектрометров при анализе газовых смесей эффективно при анализе многокомпонентных газовых смесей, когда контроль ведется по нескольким компонентам.

Общее число определяемых компонентов может достигать 20 и более.

Основные параметры масс-спектрометров - диапазон масс определяемых компонентов и разрешающая способность, которую определяют отношением М / М (М - максимальное массовое число компонента, регистрируемого раздельно от другого компонента, массовое число которого отличается от максимального на M, равного единице).

Основные преимущества масс-спектрометров следующие: непрерывность и одновременность анализа всех компонентов; малое приборное запаздывание; относительно одинаковое влияние внешних условий на погрешность измерения, что сохраняет точность их соотношений; дешевизна изготовления и эксплуатация прибора (при условии достаточно широкого спектра анализов).

Особым преимуществом масс-спектрометрического метода, наряду с достаточно высокой чувствительностью (?10-12 - 10-15 г), является небольшой расход пробы АГС.

Масс-спектрометр MX 1215. Предназначен для определения концентраций кислорода, водорода, оксида и диоксида углерода, азота и аргона в отходящих газах кислородного конвертора, а также мартеновского, доменного и химических производств.

Масс-спектрометром определяют одновременно шесть компонентов пробы АГС, имеющих молекулярную массу от 2 до 44.

Время реагирования Гэо не превышает 2 с; потребляемая мощность 6,5 кВт; масса 1100 кг.

Масс-спектрометр MX 1215 представляет собой статический масс-спектрометр со 180° магнитным полем, в котором ионы определяемого компонента пробы АГС разделяются по значению отношения массы к заряду и фокусируются по направлению движения.

Одним из важнейших направлений в области масс-спектрометрического приборостроения является разработка унифицированного комплекса масс-спектрометрических приборов (УКМСП), включающего масс-спектрометры первого, второго и третьего классов с предельной разрешающей способностью соответственно 105, 104 и 500. Приборы УКМСП в зависимости от решаемой задачи комплектуются различными системами ввода пробы АГС, источниками и приемниками ионов, системами регистрации и обработки информации, вспомогательными устройствами.

Кислород обладает наибольшей магнитной восприимчивостью по сравнению с другими газами. В табл. 1 приведены объемная и относительная (относительно кислорода) магнитная восприимчивость некоторых газов (при 7 = 0°С).

Магнитные свойства некоторых газов

Газ

Химическая формула

Магнитная восприимчивость

объемная, х-109

относительная

Кислород

02

146

1,0

Воздух (21% О2)

30,8

0,21

Монооксид азота

NO

53,0

0,362

Диоксид азота

NO2

9,0

0,0616

Оксид азота (I)

N2O

3,0

0,02

Ацетилен

C2Ha

1,0

0,0068

Из табл. видно, что большинство газов обладает ничтожно малой по сравнению с кислородом магнитной восприимчивостью, что обеспечивает возможность избирательного определения концентрации кислорода во многих газовых смесях. Только два газа - монооксид и диоксид азота - имеют относительно большую магнитную восприимчивость, но они встречаются весьма редко в смесях промышленных газов, к тому же монооксид азота в присутствии кислорода вступает с ним в реакцию и переходит в диоксид азота.

Для определения концентрации молекулярного кислорода наибольшее распространение получили следующие методы: термомагнитный, магнитомеханический, магнитопневматический.

газоанализатор спектрометрический магнитный поглощение

Размещено на Allbest.ru


Подобные документы

  • Принципиальная схема оптико-акустического газоанализатора. Избирательное поглощение инфракрасного излучения определяемым компонентом анализируемой газовой смеси. Очевидные преимущества ОА-метода, прибор для реализации. Системы контроля утечки газа.

    курсовая работа [529,6 K], добавлен 20.12.2013

  • Суть физического явления электронного парамагнитного резонанса (ЭПР). Ядерный магнитный резонанс: открытие, сущность, применение. Основные элементы спектрометров. Характеристики спектров поглощения электромагнитного излучения; оптическая спектроскопия.

    презентация [1,4 M], добавлен 22.05.2014

  • Описание устройств для обнаружения утечки горючих и взрывоопасных газов. Принципиальная схема, ее пояснение. График падения эффективного напряжения выходного сигнала на сопротивлении нагрузки. Заводская настройка чувствительности датчика, схема включения.

    курсовая работа [1,1 M], добавлен 03.04.2014

  • Принципиальная схема усилителя-формирователя и блока питания, параметры их элементов. Основные виды фоторезисторов. Вид статической характеристики усилителя формирователя. Принципиальная схема моста постоянного тока с терморезистором и фоторезистором.

    курсовая работа [430,8 K], добавлен 26.01.2010

  • Индикаторное устройство. Измерение амплитуд сложных сигналов на отдельной частоте. Частотная селекция входного сигнала. Анализ спектра сигналов. Структурная схема фильтрового анализатора. Измерение нелинейных искажений. Сущность спектрального метода.

    реферат [43,2 K], добавлен 10.12.2008

  • Взаимосвязь измеряемой высоты с электрическим эквивалентом . Измерение длительности импульса на основе микроконтроллера семейства PIC16F87x компании Microchip. Функциональная схема измерителя высоты. Принципиальная электрическая схема источника питания.

    курсовая работа [529,6 K], добавлен 07.01.2013

  • Диаграммы амплитудного и фазового спектров ФВЧ. Параметры УРЧ, спектры сигналов и принципиальная схема устройства. Параметры гетеродина, графики зависимостей. Последовательность униполярных импульсов. Принципиальная электрическая схема простейшего АГ.

    контрольная работа [601,1 K], добавлен 26.08.2010

  • Структурная, функциональная и принципиальная схема для устройства регистровой памяти типа "магазин". Выполнение необходимых расчетов для обеспечения требуемых токов и потенциалов для используемых элементов. Временные соотношения и потребляемая мощность.

    курсовая работа [433,5 K], добавлен 14.07.2009

  • Термины и определения теории автоматики. Автоматизированные системы. Структура САУ, типовая схема и применение в производственном цикле. Классификация элементов автоматических систем. Свойства объектов регулирования. Функции разгона переходного процесса.

    презентация [1,4 M], добавлен 05.05.2014

  • Шумомер - прибор для объективного измерения уровня громкости шума, основные требования к нему. Измерение акустического шума, его характеристика по шкале. Выбор и обоснование материалов. Разработка и расчёт принципиальной схемы, программы и алгоритма.

    курсовая работа [2,2 M], добавлен 12.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.