Основные характеристики измерительных преобразователей
Понятие и принцип работы аналоговых электроизмерительных приборов, их обобщённая структурная схема. Метрологические характеристики и параметры электроизмеритетельных приборов. Основные технические показатели средств измерения. Диапазон и предел измерений.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 10.01.2013 |
Размер файла | 1,7 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
Аналоговые электроизмерительные приборы (АЭП) представляют собой важнейшую группу технических средств электрических измерений.
Аналоговыми измерительными приборами называют приборы, показания которых являются непрерывной функцией изменений измеряемой величины. Эти приборы отличаются относительной простотой, дешевизной, высокой надежностью, разнообразием применения, выпускаются вплоть до класса точности 0,05 и представляют собой важнейшую группу технических средств электрических измерений.
Аналоговые приборы классифицируют по ряду признаков: по точности (классам точности), назначению (амперметры, вольтметры и т. д.), методу преобразования (прямого, компенсационного, смешанного) и некоторым другим.
Принцип работы приборов. Электромеханический прибор состоит из двух основных частей: измерительной цепи и измерительного механизма.
Измерительная цепь служит для преобразования измеряемой величины в другую, непосредственно воздействующую на измерительный механизм.
В измерительном механизме электрическая энергия преобразуется в механическую энергию перемещения подвижной части. Обычно применяется угловое перемещение.
По способу создания вращающего момента (способ преобразования электромагнитной энергии, подводимой к прибору, в механическую энергию перемещения подвижной части) электромеханические приборы разделяются на следующие основные группы:
· магнитоэлектрические;
· электромагнитные;
· электродинамические;
· электростатические;
· индукционные.
По способу создания противодействующего момента приборы делятся на две группы:
· с механическим противодействующим моментом;
· с электрическим противодействующим моментом-логометры.
· Шкала прибора обычно представляет собой пластину, имеющую белую поверхность с черными отметками, соответствующими определенным значениям измеряемой величины.
· Указатель представляет собой перемещающуюся над шкалой стрелку, жестко скрепленную с подвижной частью прибора. Применяется также световой способ отсчета, который заключается в следующем: на оси подвижной части закрепляется зеркальце, освещаемое специальным осветителем; луч света, отраженный от зеркальца, попадает на шкалу и фиксируется на ней, например в виде светового пятна с темной нитью посередине; при повороте подвижной части световой указатель перемещается по шкале.
1.Принципы построения аналоговых измерительных приборов
Мера - это средство измерения (СИ), предназначенное для воспроизведения физической величины заданного размера.
Однозначные меры служат для воспроизведения однозначной физической величины.
Многозначные меры плавно или дискретно воспроизводят ряд значений одной и той же физической величины.
2. Обобщённая структурная схема АЭП
В структурах АЭП выделяют сходные по функциональному признаку узлы, что позволяет пользоваться обобщённой структурной схемой (рисунок 1)
УП - устройство преобразования;
ОУ - отсчетные устройства;
ОС - образцовые средства;
ВУ - вспомогательные устройства.
Рисунок 1 - Обобщенная структурная схема АЭП
Устройство преобразования (УП) состоит из одного или нескольких измерительных преобразователей (ИП), предназначенных для преобразования измеряемой величины x в такой сигнал y, параметры которого соответствуют входным характеристикам отсчётного устройства. В УП могут входить масштабные, функциональные и другие виды ИП.
Отсчетные устройства (ОУ) предназначены для преобразования сигналов измерительной информации y в форму, доступную для считывания значений измеряемой величины.
Образцовые средства (ОС) используют для калибровки АЭП (генератор меток в электронных осциллографах).
Вспомогательные устройства (ВУ) не принимают непосредственного участия в преобразовании сигналов, но обеспечивают необходимые условия работы других узлов (источники питания).
Устройства преобразования и отсчёта являются необходимой принадлежностью структуры АЭП, в то время как, наличие образцовых средств и вспомогательных устройств не является обязательным.
Классификация АЭП представлена на рисунке
Рисунок 2
3. Метрологические характеристики и параметры аналоговых электроизмеритетельных приборов
Технические характеристики СИ влияющие на результаты и погрешности измерений называются метрологическими характеристиками. Подаваемый на вход АЭП сигнал характеризуется, как правило, рядом параметров.
Информативным параметром входного сигнала называют параметр входного сигнала, функционально связанный с измеряемым свойством или являющийся самим измеряемым свойством объекта.
Неинформативным параметром входного сигнала называют параметр входного сигнала, не связанный функционально с измеряемым свойством объекта измерения.
Информативным параметром выходного сигнала называют параметр выходного сигнала функционально связанный с информативным параметром входного сигнала преобразователя или являющийся выходной величиной меры.
Неинформативный параметр выходного сигнала - это параметр выходного сигнала не связанный функционально с информативным параметром входного сигнала преобразователя или не являющийся выходной величиной меры.
4. Основные технические характеристики средств измерения
К основным техническим характеристикам средств измерения относятся:
-чувствительность;
-порог чувствительности;
-стабильность чувствительности;
-диапазон и предел измерения;
-потребляемая прибором мощность;
-время установления показаний;
-класс точности.
5. Чувствительность
Чувствительность - это отношение изменения выходного сигнала АЭП к вызывающему его изменению измеряемой величины.
Различают абсолютную и относительную чувствительности.
Sабс.= Дхп/Дх
Sотн.=Дхп/(Дх/х
где Дх - изменение величины на входе АЭП;
Дхп - изменение величины на выходе АЭП;
х- мгновенное значение входной величины.
Существенной характеристикой АЭП является порог чувствительности - минимальное изменение входной величины, которое может зафиксировать прибор без каких-либо дополнительных устройств.
Стабильность чувствительности - характеризует стабильность чувствительности во времени при различных воздействиях внешних факторов.
6. Диапазон и предел измерений
Диапазон - это область значений измеряемой величины для которой нормированы допускаемые погрешности прибора. Различают верхний и нижний пределы измерений прибора - наибольшее и наименьшее значения диапазона измерений.
АЭП выпускают однопредельными и многопредельными.
В многопредельных приборах диапазон измерений разбивается на поддиапазоны, причём их верхние пределы выбирают так, чтобы существенно снизить относительную погрешность измерений.
Динамический диапазон D, определяется как отношение наибольшего верхнего предела измерений прибора хв к минимальному значению хо измеряемому прибором.
D=хв/хо
Диапазон частот прибора определяется тем диапазоном частот изменения входного сигнала (измеряемая величина) при котором чувствительность прибора меняется в заданных пределах.
Различают узкополосные и широкополосные АЭП.
Узкополосные АЭП предназначены для работы в узкой фиксированной или регулируемой полосе частот. Широкополосные рассчитаны на работу в условиях значительных изменений частоты входного сигнала, причём верхняя и нижняя границы диапазона частот нормируются для каждого типа приборов техническими условиями.
7. Класс точности прибора
Класс точности введён для сопоставления средств измерения, предназначенных для измерения одной и той же физической величины.
Класс точности - это обобщённая характеристика, определяемая пределами допускаемых основных и дополнительных погрешностей.
8. Погрешности аналоговых электроизмерительных приборов
Различают:
- основную погрешность;
- дополнительную погрешность;
- динамическую погрешность;
- погрешность взаимодействия.
Основная погрешность обусловлена отличием реальной характеристики преобразования СИ в нормальных условиях эксплуатации от номинальной характеристики преобразования. По способу числового выражения основная погрешность подразделяется на три вида:
1) абсолютную (разность между действительным и измеренным значением)
Д=x-xи;
2) относительную
д=(Д/xи)·100%
3) приведённую (отношение абсолютной погрешности к диапазону измерения шкалы прибора)
г=(Д/xн)·100%.
Еслиг=(Д/хв)·100%,
то г - класс точности.
9.Аналоговые вольтметры
Структурная схема электронного аналогового вольтметра прямого преобразования соответствует типовой схеме рис. 2.1 и, как видно из рис. 3.13, в самом общем случае включает входное устройство (ВУ), на вход которого подается измеряемое напряжение Ux, ИП и магнитоэлектрический прибор, применяемый в качестве ИУ.
Входное устройство представляет в простейшем случае делитель измеряемого напряжения -- аттенюатор, с помощью которого расширяются пределы измерения вольтметра. Помимо точного деления Ux, ВУ не должно снижать входной импеданс вольтметра, влияющий, как уже неоднократно подчеркивалось, на методическую погрешность измерения Ux- Таким образом, использование ВУ в виде аттенюатора является, в дополнение к добавочным
Рисунок 3
Обобщенная структурная схема аналогового вольтметра прямого преобразования.
сопротивлениям и измерительным трансформаторам напряжения, еще одним способом расширения пределов измерения вольтметров. Именно этот способ применяется в электронных вольтметрах и других радиоизмерительных приборах.
В качестве ИП в вольтметрах постоянного тока (В2) применяется усилитель постоянного тока (УПТ), а в вольтметрах переменного и импульсного тока (ВЗ и В4) --детектор в сочетании с УПТ или усилителем переменного тока. Более сложную структуру имеют преобразователи в вольтметрах остальных видов. В частности, преобразователи селективных вольтметров (В6) должны обеспечить, помимо детектирования и усиления сигнала, селекцию его по частоте, а преобразователи фазочувствительных вольтметров (В5) -- возможность измерения не только амплитудных, но и фазовых параметров исследуемого сигнала.
Структурная схема аналогового вольтметра постоянного тока соответствует обобщенной схеме рис. 3. Основным функциональным узлом таких вольтметров является УПТ. Современные вольтметры постоянного тока разрабатываются в основном как цифровые приборы.
Вольтметры переменного и импульсного тока в зависимости от назначения могут проектироваться по одной из двух структурных схем (рис. 3.14), различающихся типом ИП. В вольтметрах первой модификации (рис. 3.14, а) измеряемое напряжение Ux^ преобразуется в постоянное напряжение Ux=, которое затем измеряется вольтметром постоянного тока. Наоборот, в вольтметрах второй модификации (рис. 4, б) измеряемое напряжение сначала усиливается с помощью усилителя переменного тока, а затем детектируется и измеряется. При необходимости между детектором и ИУ может быть дополнительно включен УПТ.
Сравнивая структурные схемы рис. 4, можно еще до рассмотрения схемных решений их функциональных узлов сделать определенные выводы в отношении свойств вольтметров обеих модификаций. В частности, вольтметры первой модификации в отношении диапазона частот измеряемых напряжений не имеют таких ограничений, как вольтметры второй модификации, где этот параметр зависит от полосы пропускания усилителя переменного тока. Зато вольтметры второй модификации имеют высокую чувствительность. Из курса «Усилительные устройства» известно, что с помощью усилителя переменного тока можно получить значительно больший коэффициент усиления, чем с помощью УПТ, т. е. проектировать микровольтметры, у которых нижний предел Ux^. ограничивается собственными шумами усилителя. За счет изменения
Рис. 4.
Структурные схемы аналоговых вольтметров переменного и импульсного тока:
а--с детектором на входе; б -- с усилителем переменного тока на входе.
коэффициента деления ВУ и коэффициента усиления усилителей диапазон измеряемых напряжений может быть большим у вольтметров обеих модификаций.
Тип детектора в структурных схемах рис. 4 определяет принадлежность вольтметров обеих модификаций к вольтметрам амплитудного, среднеквадратического или средневыпрямленного напряжения. При этом вольтметры импульсного тока (В4) проектируются только как вольтметры первой модификации, чтобы избежать искажений формы импульсов в усилителе переменного тока. При измерении напряжения одиночных и редко повторяющихся импульсов применяются либо диодно-емкостные расширители импульсов в сочетании с детекторами, либо амплитудно-временное преобразование импульсов, характерное для цифровых вольтметров.
Рассмотрим теперь типовую структурную схему селективных вольтметров, которые используются при измерении малых гармонических напряжений в условиях действия помех, при исследовании спектров периодических сигналов и в целом ряде других случаев. Как видно из рис. 3.15, вольтметр представляет собой по существу супергетеродинный приемник, принцип работы которого поясняется в курсе «Радиотехнические цепи и сигналы».
Частотная селекция входного сигнала осуществляется с помощью перестраиваемого гетеродина, смесителя (См) и узкополосного усилителя промежуточной частоты (УПЧ), который обеспечивает высокую чувствительность и требуемую избирательность. Если избирательность недостаточна, может быть применено двукратное, а иногда и трехкратное преобразование частоты. Кроме того, в селективных вольтметрах обязательно наличие системы автоматической подстройки частоты и калибратора. Калибратор -- образцовый
источник (генератор) переменного напряжения определенного уровня, позволяющий исключить систематические, погрешности из-за изменения напряжения гетеродина при его перестройке, изменения коэффициентов передачи узлов вольтметра, влияния внешних факторов и т. д. Калибровка вольтметра производится перед измерением при установке переключателя П из положения 1 в положение 2.
Рис.5. Структурная схема селективного вольтметра.
В заключение отметим, что в одном приборе нетрудно совместить функции измерения постоянных и переменных напряжений, а с помощью дополнительных функциональных узлов и соответствующих коммутаций (по аналогии с выпрямительными приборами) образовать комбинированные приборы, получившие название универсальных вольтметров (В7). Современные типы таких вольтметров, как правило, проектируются в виде цифровых приборов, что позволяет дополнительно расширить их функциональные возможности и повысить точность. В связи с этим особенности построения структурных схем универсальных вольтметров будут рассмотрены в работах коллег.
Рис. 6. Схема измерительного потенциометра.
аналоговый электроизмерительный прибор
Электронные аналоговые вольтметры сравнения в большинстве своем реализуют наиболее распространенную модификацию метода сравнения -- нулевой метод. Поэтому чаще они называются компенсационными вольтметрами. По сравнению с вольтметрами прямого преобразования это более сложные, но и, как подчеркивалось ранее более точные приборы. Кроме того, видно, что в момент компенсации Х=0 и прибор не потребляет мощности от источника X. Применительно к компенсационным вольтметрам это означает возможность измерения не только напряжения, но и ЭДС маломощных источников. В практике электрорадиоизмерений подобные измерения выполняются как с помощью электронных компенсационных вольтметров, так и электромеханических. Для пояснения применения нулевого метода при измерении ЭДС и напряжения рассмотрим вначале классическую схему электромеханического компенсатора постоянного тока, представленную на рис. 6
Одним из основных функциональных узлов любого компенсатора является высокоточный переменный резистор R, по шкале которого отсчитывают измеряемое значение ЭДС (Ех) или напряжения (Ux). Поэтому компенсаторы принято называть по ГОСТ 9245--79 измерительными потенциометрами. В качестве образцовой меры ЭДС применяется нормальный элемент (НЭ) -- электрохимический источник, ЭДС (Еа) которого известна с очень высокой степенью точности. Однако емкость НЭ невелика, и длительное сравнение в процессе измерений Ex(Ux) с Ен невозможно. Поэтому схема потенциометра дополняется вспомогательным источником ЭДС (Еo) большой емкости. Для сравнения с Ex(Ux) используется падение напряжения на образцовом резисторе Rн., создаваемое током от источника Eо--рабочим током (Iр), который предварительно устанавливается. Таким образом, процесс измерения Ex{Ux) должен состоять из двух этапов.
На первом этапе устанавливается требуемое значение Iр. Для этого переключатель устанавливается в положение 1 и с помощью потенциометра Rp добиваются нулевого показания индикатора И (как правило, магнитоэлектрический гальванометр). Как видно из рис. 6, этому соответствует IpRн=Eн, т. е. рабочий ток Iр, который далее должен оставаться постоянным, будет воспроизводить в процессе измерений значение Ен.
На втором этапе измеряют значение Ex(Ux). Для этого переключатель переводится в положение 2, и изменением сопротивления потенциометра R вновь добиваются нулевого показания И. При Iр = const этому соответствует Ex (Ux) = IpR, т. е. искомое значение Ex(U^}^.R и может быть отсчитано по шкале R.
Таким образом, метрологические характеристики измерительных потенциометров постоянного тока определяются параметрами НЭ, образцовых резисторов, индикатора и источника Еу. В качестве НЭ применяются насыщенные и ненасыщенные обратимые гальванические элементы, положительный электрод которых образуется ртутью, а отрицательный -- амальгамой кадмия. Классы точности НЭ регламентируются ГОСТ 1954--82 в пределах 0,0002...0,02 и определяют класс точности потенциометра в целом. Потенциометр R выполняется по специальной схеме, обеспечивающей постоянство /р при изменении R и необходимое число знаков (декад) при отсчете Ex(Ux). Этим требованиям удовлетворяют схемы с замещающими и шунтирующими декадами.
Измерительные потенциометры могут использоваться и для измерения переменных напряжений. Однако компенсирующее напряжение необходимо в этом случае регулировать не только по модулю, но и по фазе. Поэтому такие потенциометры имеют более сложную схему, чем потенциометры постоянного тока, а по точности значительно уступают им из-за отсутствия на переменном токе образцовой меры, аналогичной по своим характеристикам НЭ. В практике электрорадиоизмерений они полностью вытеснены электронными компенсационными вольтметрами.
В компенсационных вольтметрах измеряемое напряжение (постоянное, переменное, импульсное) сравнивается с постоянным компенсирующим напряжением, которое в свою очередь точно измеряется вольтметром постоянного тока и является мерой Ux. Типовая структурная схема такого вольтметра приведена на рис7.
Как видно из рис. 7, основу вольтметра составляет компенсационный ИП, состоящий из измерительного диода V с нагрузкой R, регулируемого источника постоянного компенсирующего напряжения -Ек, усилителя и индикатора с двумя устойчивыми состояниями. При отсутствии Ux индикатор, реализуемый с помощью
функциональных узлов находится в первом устойчивом состоянии, а при некотором пороговом значении переходит во второе состояние. Процесс измерения Ux как раз и сводится к постепенному увеличению Ек до тех пор, пока индикатор не перейдет во второе устойчивое состояние. Значение Ек, соответствующее моменту перехода, измеряется вольтметром постоянного тока и является мерой Ux.
Рис. 7. Структурная схема компенсационного вольтметра.
В сочетании с другими схемными решениями (применение индикатора с малым пороговым напряжением, лампового измерительного диода со стабильной характеристикой и др.) оказывается возможным проектировать высокоточные компенсационные вольтметры.
Недостаток рассмотренной схемы -- необходимость установки Ей вручную. Поэтому в большинстве вольтметров схему ИП усложняют, обеспечивая автоматическую компенсацию Ux и Ек. Автокомпенсационные вольтметры являются прямопоказывающими приборами и более удобны в эксплуатации.
ОСНОВНЫЕ УЗЛЫ АНАЛОГОВЫХ ВОЛЬТМЕТРОВ
Рассмотрим схемные решения основных функциональных узлов, определяющих метрологические характеристики аналоговых вольтметров. Большинство этих узлов применяются и в других видах электронных измерительных приборов.
Входное устройство
Как уже указывалось выше, ВУ предназначено для расширения пределов измерения вольтметра. В простейшем случае оно представляет собой аттенюатор, выполненный по резистивной (рис. 8, а), емкостной (рис8, б) или комбинированной (рис. 8, в) схемам.
Наиболее простой и универсальной (для Uх= и Ux~) является схема, представленная на рис. 8, а, но на высоких частотах существенное влияние начинают оказывать паразитные емкости. Поэтому на высоких частотах переходят либо к емкостной схеме, либо к комбинированной, которая при R1C1 = R2C2 оказывается частотно-компенсированной (коэффициент деления k = R2/(R1 + Р2), как и для схемы, изображенной на рис. 8, а).
Принципиальной особенностью данной схемы является изменение Uв с помощью низкоомного резистивного аттенюатора с постоянным входным и выходным импедансом. Это повышает точность измерения Ux~, но требует введения в структуру ВУ преобразователя импеданса (ПИ), обеспечивающего трансформацию высокого входного сопротивления вольтметра в малое входное сопротивление аттенюатора. В качестве ПИ наиболее часто используют повторитель напряжения на полевом транзисторе с глубокой отрицательной обратной связью. С помощью
Рис. 8 Схемы аттенюаторов вольтметров:
а--на резисторах; б -- на конденсаторах; в -- комбинированная.
Рис. 9 Структурная схема универсального входного устройства.
входного делителя напряжения (ВДН) предусматривается дополнительная возможность расширения пределов измерения вольтметра. ВДН представляет собой фиксированный делитель резистивно-емкостного типа (см. рис. 3.18, в)
На высоких частотах входное сопротивление вольтметра уменьшается, а входная емкость и индуктивности проводников образуют последовательный колебательный контур, который на резонансной частоте имеет практически нулевое сопротивление. Для нейтрализации этих эффектов ПИ конструктивно выполняется как выносной пробник с ВДН в виде насадки.
Усилители.
Усилители постоянного тока, как видно из структурных схем (см. рис. 9 и 3.14, о), обеспечивают получение мощности, достаточной для приведения в действие ИМ магнитоэлектрического прибора, и согласование входного сопротивления ИУ с выходным сопротивлением ВУ или детектора. К УПТ предъявляются два основных требования: высокое постоянство коэффициента усиления и пренебрежимо малые флюктуации выходной величины при отсутствии Ux= (Дрейф нуля). Поэтому все практические схемы УПТ имеют глубокую отрицательную обратную связь (ООС), обеспечивающую стабильную работу их и нечувствительность к перегрузкам. Радикальными методами борьбы с дрейфом нуля являются его периодическая коррекция, а также преобразование Uх= в переменное напряжение с последующим усилением и выпрямлением этого напряжения.
Усилители переменного тока в соответствии со своим функциональным назначением (см. рис. 4, б) должны иметь высокую чувствительность, большое значение и высокую стабильность коэффициента усиления, малые нелинейные искажения и широкую полосу пропускания (за исключением УПЧ селективного вольтметра). Удовлетворить этим противоречивым требованиям могут только многокаскадные усилители с ООС и звеньями для коррекции частотной характеристики. В некоторых случаях применяются логарифмические усилители для получения линейной шкалы в децибелах. Если ставится задача минимизации аддитивной погрешности вольтметра, усилители могут быть двухканальными с усилением основного сигнала и сигнала, корректирующего аддитивную погрешность. Для расширения функциональных возможностей многие вольтметры имеют специальный выход усилителя и могут использоваться как широкополосные усилители. Более того, усилители могут выпускаться как самостоятельные измерительные приборы, образуя подгруппу У.
Детально усилители постоянного и переменного тока рассматриваются в курсе «Усилительные устройства».
Детектор.
Тип детектора определяет, как уже указывалось, принадлежность вольтметров переменного тока к вольтметрам амплитудного, среднеквадратического или средневыпрямленного напряжения. В соответствии с этим сами детекторы классифицируются следующим образом: по параметру Ux~ которому соответствует ток или напряжение в выходной цепи детектора: пиковый детектор, детекторы среднеквадратического и средневыпрямленного значений напряжения; по схеме входа: детекторы с открытым и закрытым входом по постоянному напряжению;
по характеристике детектирования: линейные и квадратичные детекторы.
Рис. 10. Схемы пикового детектора:
А -- с открытым входом; Б -- с закрытым входом.
Пиковый детектор -- это детектор, выходное напряжение которого непосредственно соответствует t/max или <7min (Ов или Us). Пиковый детектор относится к линейным и может иметь открытый (рис. 10, а) или закрытый (рис. 10, б) вход по постоянному напряжению.
Принцип работы пиковых детекторов специфичен и заключается в заряде конденсатора С через диод V до максимального (пикового) значения Ux~, которое затем запоминается, если постоянная времени разряда С (через R) значительно превышает постоянную времени заряда. Полярность включения V определяет соответствие Ux=, либо Umax(Uв), либо Umin(Uн), а возможные пульсации Uх= сглаживаются цепочкой Рф, Сф. Если детектор имеет открытый вход, Uх= определяется суммой U и Uв(Uн), т. е. соответствует Umax (Umin) При закрытом входе Uх= соответствует Uв(Uн). Если же Ux~ не содержит постоянной составляющей, то схемы, изображенные на рис. 10, а, б, идентичны, а Uх= соответствует Um. В некоторых случаях применяют двухполупериодные пиковые детекторы с удвоением напряжения, позволяющие прямо измерять значение размаха напряжения.
Существенным достоинством пиковых детекторов являются большое входное сопротивление (равное R/2 для схемы на рис. 3.20, а и R/3--для схемы на рис. 10, б) и наилучшие по сравнению с другими типами детекторов частотные свойства. Поэтому пиковые детекторы наиболее часто применяют в вольтметрах первой модификации (см. рис. 4, о), конструктивно оформляя совместно с ВУ в виде выносного пробника. В этом случае по кабелю, соединяющему пробник с прибором, передается Uх=.
Детектор среднеквадратического значения--это преобразователь переменного напряжения в постоянный ток (напряжение), пропорциональный U2ск . Характеристика детектирования в этом случае должна быть квадратичной, а при на. личии U- необходим детектор с открытым входом. В современных типах вольтметров применяются в основном квадратичные детекторы с термопреобразователями, аналогичными преобразователям термоэлектрических амперметров. Основным недостатком их, как отмечалось ранее, является квадратичный характер шкалы прибора. В вольтметрах этот недостаток устраняется применением дифференциальной схемы включения двух (или более) термопреобразователей, как показано на рис22.
Рис. 11. Структурная схема детектора среднеквадратического значения напряжения.
При подаче на термопреобразователь ТП1 измеряемого напряжения Uх~ выходное напряжение ТП1 по аналогии с (3.26) U1=ktU2ск .
Кроме ТП1, в схеме имеется второй термопреобразователь ТП2, включенный встречно с ТП1. На ТП2 подается напряжение обратной связи, поэтому его выходное напряжение U2 == ktBU23.
Таким образом, на входе УПТ имеет место результирующее напряжение
U1 - U2 = kt(U2ск - BU23)
чему соответствует
U3 = kуптkт(U2ск - BU23).
Если параметры схемы выбрать так, чтобы
kуптkт BU23>> U3,
то тогда окончательно U3 Uск, т. е. шкала ИУ будет равномерной.
Детектор средневыпрямленного значения-- это преобразователь переменного напряжения в постоянный ток, пропорциональный Uсв. Схемно он базируется на двухполупериодном полупроводниковом выпрямителе, рассмотренном при анализе выпрямительных амперметров Необходимо, однако, добавить, что линейность характеристики таких детекторов будет тем лучше, чем больше Uх~ (при малых Ux~ детектор становится квадратичным). Поэтому детекторы средневыпрямленного значения, как правило, применяют в вольтметрах второй модификации, б).
Размещено на Allbest.ru
Подобные документы
Понятие средства измерений, их виды и классификация погрешностей. Метрологические характеристики средств измерений, особенности норм на их значения. Частные динамические характеристики аналого-цифровых преобразователей и цифровых измерительных приборов.
курсовая работа [340,9 K], добавлен 03.01.2013Основные свойства измеряемых погрешностей. Технические и метрологические характеристики средств электротехнических измерений, их сравнительный анализ. Моделирование и реализация виртуального прибора в программной среде National Instruments, Labview.
курсовая работа [2,4 M], добавлен 09.04.2015Характеристики измерительных преобразователей. Надежность средств измерений. Выходное напряжение тахогенераторов. Основные характеристики, определяющие качество преобразователей. Алгоритмические методы повышения качества измерительных преобразователей.
курсовая работа [266,1 K], добавлен 09.09.2016Метрологические, динамические и эксплуатационные характеристики измерительных систем, показатели их надежности, помехозащищенности и безопасности. Средства и методы проверки; схема, принцип устройства и действия типичной контрольно-измерительной системы.
контрольная работа [418,2 K], добавлен 11.10.2010Выбор датчика температуры. Разработка структурной и функциональной схем измерительного канала. Основные технические характеристики усилителей. Настройка программного обеспечения. Оценка случайной погрешности. Классы точности измерительных приборов.
курсовая работа [2,2 M], добавлен 19.11.2012Принцип работы и основные технические характеристики электромеханических измерительных приборов. Расчет и изготовление прибора для измерения параметров реле. Выбор типа регулирующего транзистора и его режима. Достоинства транзисторных стабилизаторов.
курсовая работа [610,9 K], добавлен 22.06.2010Технические характеристики цифровых измерительных приборов. Сравнительная характеристика аналоговых и цифровых приборов. Современные цифровые универсальные приборы контроля геометрических параметров. Измерение среднеквадратического значения напряжения.
реферат [774,0 K], добавлен 29.11.2011Принципы действия приборов для измерения электрического тока, напряжения и сопротивления; расчет параметров многопредельного амперметра магнитоэлектрической системы и четырехплечего уравновешенного моста постоянного тока; метрологические характеристики.
курсовая работа [2,2 M], добавлен 18.06.2012Измерительные приборы, при помощи которых можно измерить напряжение, ток, частоту и разность фаз. Метрологические характеристики приборов. Выбор ваттметра для измерения активной мощности, потребляемой нагрузкой. Относительные погрешности измерения.
задача [26,9 K], добавлен 07.06.2014Основы метрологического обеспечения, научные и организационные основы, технические средства, правила и нормы. Цифровые устройства: шифраторы и дешифраторы, сумматоры, счетчики. Основные характеристики микропроцессоров и цифровых измерительных приборов.
курсовая работа [3,5 M], добавлен 10.01.2010