Методы передачи информации в ТКС на канальном уровне

Исследование, характеристика и обзор протоколов и методов передачи информации в телекоммуникационных системах на канальном уровне. Их основные функции и возможности, преимущества и недостатки. Методы восстановления искаженных и потерянных кадров.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид контрольная работа
Язык русский
Дата добавления 17.12.2012
Размер файла 65,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Курсовая работа

Название дисциплины: Сети ЭВМ и телекоммуникации

Тема: Методы передачи информации в ТКС на канальном уровне

Студент:

Головченко А.

Содержание

Введение

1. Протоколы канального уровня

2. Работа канального уровня

3. Методы восстановления искаженных и потерянных кадров

Заключение

Глоссарий

Список использованных источников

информация канальный телекоммуникационный кадр

Введение

Наряду с автономной работой значительное повышение эффективности использования компьютеров может быть достигнуто объединением их в компьютерные сети.

Под компьютерной сетью в широком смысле слова понимают любое множество компьютеров, связанных между собой каналами связи для передачи данных.

Существует ряд веских причин для объединения компьютеров в сети. Во-первых, совместное использование ресурсов позволяет нескольким ЭВМ или другим устройствам осуществлять совместный доступ к отдельному диску (файл-серверу), дисководу CD-ROM, стримеру, принтерам, плоттерам, к сканерам и другому оборудованию, что снижает затраты на каждого отдельного пользователя. Во-вторых, кроме совместного использования дорогостоящих периферийных устройств имеется возможность аналогично использовать сетевые версии прикладного программного обеспечения. В-третьих, компьютерные сети обеспечивают новые формы взаимодействия пользователей в одном коллективе, например при работе над общим проектом. В-четвертых, появляется возможность использовать общие средства связи между различными прикладными системами (коммуникационные услуги, передача данных и видеоданных, речи и т.д.). Особое значение имеет организация распределенной обработки данных. В случае централизованного хранения информации значительно упрощаются процессы обеспечения ее целостности, а также резервного копирования.

Целью моей курсовой работы является исследование и обзор концепций методов передачи информации в телекоммуникационных системах на канальном уровне, их основных функций и возможностей, преимуществ и недостатков.

1. Протоколы канального уровня

Канальный уровень обеспечивает передачу пакетов данных, поступающих от протоколов верхних уровней, узлу назначения, адрес которого также указывает протокол верхнего уровня. Протоколы канального уровня оформляют переданные им пакеты в кадры собственного формата, помещая указанный адрес назначения в одно из полей такого кадра, а также сопровождая кадр контрольной суммой. Протокол канального уровня имеет локальный смысл, он предназначен для доставки кадров данных, как правило, в пределах сетей с простой топологией связей и однотипной или близкой технологией, например в односегментных сетях Ethernet или же в многосегментных сетях Ethernet и Token Ring иерархической топологии, разделенных только мостами и коммутаторами. Во всех этих конфигурациях адрес назначения имеет локальный смысл для данной сети и не изменяется при прохождении кадра от узла-источника к узлу назначения. Возможность передавать данные между локальными сетями разных технологий связана с тем, что в этих технологиях используются адреса одинакового формата, к тому же производители сетевых адаптеров обеспечивают уникальность адресов независимо от технологии.

Другой областью действия протоколов канального уровня являются связи типа «точка-точка» глобальных сетей, когда протокол канального уровня ответственен за доставку кадра непосредственному соседу. Адрес в этом случае не имеет принципиального значения, а на первый план выходит способность протокола восстанавливать искаженные и утерянные кадры, так как плохое качество территориальных каналов, особенно коммутируемых телефонных, часто требует выполнения подобных действий.

Наиболее существенными характеристиками метода передачи, а значит, и протокола, работающего на канальном уровне, являются следующие:

1) асинхронный/синхронный;

2) символьно-ориентированный/бит-ориентированный;

3) с предварительным установлением соединения/дейтаграммный;

4) с обнаружением искаженных данных/без обнаружения;

5) с обнаружением потерянных данных/без обнаружения;

6) с восстановлением искаженных и потерянных данных/без восстановления;

7) с поддержкой динамической компрессии данных/без поддержки.

Асинхронные протоколы

Асинхронные протоколы представляют собой наиболее старый способ связи. Эти протоколы оперируют не с кадрами, а с отдельными символами, которые представлены байтами со старт-стоповыми символами. Асинхронные протоколы ведут свое происхождение от тех времен, когда два человека связывались с помощью телетайпов по каналу «точка-точка». С развитием техники асинхронные протоколы стали применяться для связи телетайпов, разного рода клавиатур и дисплеев с вычислительными машинами. Единицей передаваемых данных был не кадр данных, а отдельный символ. Некоторые символы имели управляющий характер, например символ <CR> предписывал телетайпу или дисплею выполнить возврат каретки на начало строки. В этих протоколах существуют управляющие последовательности, обычно начинающиеся с символа <ESC>. Эти последовательности вызывали на управляемом устройстве достаточно сложные действия - например, загрузку нового шрифта на принтер.

В асинхронных протоколах применяются стандартные наборы символов, чаще всего ASCII или EBCDIC. Так как первые 32 или 27 кодов в этих наборах являются специальными кодами, которые не отображаются на дисплее или принтере, то они использовались асинхронными протоколами для управления режимом обмена данными. В самих пользовательских данных, которые представляли собой буквы, цифры, а также такие знаки, как @, %, $ и т. п., специальные символы никогда не встречались, так что проблемы их отделения от пользовательских данных не существовало.

Постепенно асинхронные протоколы усложнялись, и стали наряду с отдельными символами использовать целые блоки данных, то есть кадры. Например, популярный протокол XMODEM передает файлы между двумя компьютерами по асинхронному модему. Начало приема очередного блока файла инициируется символьной командой - принимающая сторона постоянно передает символ ASCII NAK. Передающая сторона, приняв NAK, отправляет очередной блок файла, состоящий из 128 байт данных, заголовка и концевика. Заголовок состоит из специального символа SOH (Start Of Header) и номера блока. Концевик содержит контрольную сумму блока данных. Приемная сторона, получив новый блок, проверяла его номер и контрольную сумму. В случае совпадения этих параметров с ожидаемыми приемник отправлял символ АСК, а в противном случае - символ NAK, после чего передатчик должен был повторить передачу данного блока. В конце передачи файла передавался символ ЕОХ.

Как видно из описания протокола XMODEM, часть управляющих операций выполнялась в асинхронных протоколах посылкой в асинхронном режиме отдельных символов, в то же время часть данных пересылалась блоками, что более характерно для синхронных протоколов.

Синхронные символьно-ориентированные и бит-ориентированные протоколы

В синхронных протоколах между пересылаемыми символами (байтами) нет стартовых и стоповых сигналов, поэтому отдельные символы в этих протоколах пересылать нельзя. Все обмены данными осуществляются кадрами, которые имеют в общем случае заголовок, поле данных и концевик (рис. 1). Все биты кадра передаются непрерывным синхронным потоком, что значительно ускоряет передачу данных.

Рис. 1. Кадры синхронных протоколов

Так как байты в этих протоколах не отделяются друг от друга служебными сигналами, то одной из первых задач приемника является распознавание границы байт. Затем приемник должен найти начало и конец кадра, а также определить границы каждого поля кадра - адреса назначения, адреса источника, других служебных полей заголовка, поля данных и контрольной суммы, если она имеется.

Большинство протоколов допускает использование в кадре поля данных переменной длины. Иногда и заголовок может иметь переменную длину. Обычно протоколы определяют максимальное значение, которое может иметь длина поля данных. Эта величина называется максимальной единицей передачи данных (Maximum Transfer Unit, MTU). В некоторых протоколах задается также минимальное значение, которое может иметь длина поля данных. Например, протокол Ethernet требует, чтобы поле данных содержало, по крайней мере, 46 байт данных (если приложение хочет отправить меньшее количество байт, то оно обязано дополнить их до 46 байт любыми значениями). Другие протоколы разрешают использовать поле данных нулевой длины, например FDDI.

Существуют также протоколы с кадрами фиксированной длины, например, в протоколе АТМ кадры фиксированного размера 53 байт, включая служебную информацию. Для таких протоколов необходимо решить только первую часть задачи - распознать начало кадра.

Синхронные протоколы канального уровня бывают двух типов: символьно-ориентированные (байт-ориентированные) и бит-ориентированные. Для обоих характерны одни и те же методы синхронизации бит. Главное различие между ними заключается в методе синхронизации символов и кадров.

Символьно-ориентированные протоколы

Символьно-ориентированные протоколы используются в основном для передачи блоков отображаемых символов, например текстовых файлов. Так как при синхронной передаче нет стоповых и стартовых битов, для синхронизации символов необходим другой метод. Синхронизация достигается за счет того, что передатчик добавляет два или более управляющих символа, называемых символами SYN, перед каждым блоком символов. В коде ASCII символ SYN имеет двоичное значение 0010110, это несимметричное относительно начала символа значение позволяет легко разграничивать отдельные символы SYN при их последовательном приеме. Символы SYN выполняют две функции: во-первых, они обеспечивают приемнику побитную синхронизацию, во-вторых, как только битовая синхронизация достигается, они позволяют приемнику начать распознавание границ символов SYN. После того как приемник начал отделять один символ от другого, можно задавать границы начала кадра с помощью другого специального символа. Обычно в символьных протоколах для этих целей используется символ STX (Start of TeXt, ASCII 0000010). Другой символ отмечает окончание кадра - ЕТХ (End of TeXt, ASCII 0000011).

Однако такой простой способ выделения начала и конца кадра хорошо работал только в том случае, если внутри кадра не было символов STX и ЕТХ. При подключении к компьютеру алфавитно-цифровых терминалов такая задача действительно не возникала. Тем не менее, синхронные символьно-ориентированные протоколы позднее стали использоваться и для связи компьютера с компьютером, а в этом случае данные внутри кадра могут быть любые, если, например, между компьютерами передается программа. Наиболее популярным протоколом такого типа был протокол BSC компании IBM. Он работал в двух режимах - непрозрачном, в котором некоторые специальные символы внутри кадра запрещались, и прозрачном, в котором разрешалась передачи внутри кадра любых символов, в том числе и ЕТХ. Прозрачность достигалась за счет того, что перед управляющими символами STX и ЕТХ всегда вставлялся символ DLE (Data Link Escape). Такая процедура называется стаффингом символов (stuff - всякая всячина, заполнитель). А если в поле данных кадра встречалась последовательность DLE ЕТХ, то передатчик удваивал символ DLE, то есть порождал последовательность DLE DLE ЕТХ. Приемник, встретив подряд два символа DLE DLE, всегда удалял первый, но оставшийся DLE уже не рассматривал как начало управляющей последовательности, то есть оставшиеся символы DLE ЕТХ считал просто пользовательскими данными.

Бит-ориентированные протоколы

Потребность в паре символов в начале и конце каждого кадра вместе с дополнительными символами DLE означает, что символьно-ориентированная передача не эффективна для передачи двоичных данных, так как приходится в поле данных кадра добавлять достаточно много избыточных данных. Кроме того, формат управляющих символов для разных кодировок различен, например, в коде ASCII символ SYN равен 0010110, а в коде EBCDIC - 00110010. Так что этот метод допустим только с определенным типом кодировки, даже если кадр содержит чисто двоичные данные. Чтобы преодолеть эти проблемы, сегодня почти всегда используется более универсальный метод, называемый бит-ориентированной передачей. Этот метод сейчас применяется при передаче как двоичных, так и символьных данных.

Протоколы с гибким форматом кадра

Для большей части протоколов характерны кадры, состоящие из служебных полей фиксированной длины. Исключение делается только для поля данных, с целью экономной пересылки, как небольших квитанций, так и больших файлов. Способ определения окончания кадра путем задания длины поля данных, рассмотренный выше, как раз рассчитан на такие кадры с фиксированной структурой и фиксированными размерами служебных полей.

Однако существует ряд протоколов, в которых кадры имеют, гибкую структуру. Например, к таким протоколам относятся очень популярный прикладной протокол управления сетями SNMP, а также протокол канального уровня РРР, используемый для соединений типа «точка-точка». Кадры таких протоколов состоят из неопределенного количества полей, каждое из которых может иметь переменную длину. Начало такого кадра отмечается некоторым стандартным образом, например, с помощью флага, а затем протокол последовательно просматривает поля кадра и определяет их количество и размеры. Каждое поле обычно описывается двумя дополнительными полями фиксированного размера. Например, если в кадре встречается поле, содержащее некоторую символьную строку, то в кадр вставляются три поля:

Тип

Длина

Значение

string

6

Public

Дополнительные поля «Тип» и «Длина» имеют фиксированный размер в один байт, поэтому протокол легко находит границы поля «Значение». Так как количество таких полей также неизвестно, для определения общей длины кадра используется либо общее поле «Длина», которое помещается в начале кадра и относится ко всем полям данных, либо закрывающий флаг.

Обнаружение и коррекция ошибок

Канальный уровень должен обнаруживать ошибки передачи данных, связанные с искажением бит в принятом кадре данных или с потерей кадра, и по возможности их корректировать.

Большая часть протоколов канального уровня выполняет только первую задачу - обнаружение ошибок, считая, что корректировать ошибки, то есть повторно передавать данные, содержавшие искаженную информацию, должны протоколы верхних уровней. Так работают такие популярные протоколы локальных сетей, как Ethernet, Token Ring, FDDI и другие. Однако существуют протоколы канального уровня, например LLC2 или LAP-B, которые самостоятельно решают задачу восстановления искаженных или потерянных кадров.

2. Работа канального уровня

Передача с установлением соединения и без установления соединения.

При передаче кадров данных на канальном уровне используются как дейтаграммные процедуры, работающие без становления соединения (connectionless), так и процедуры с предварительным установлением логического соединения (connection-oriented).

При дейтаграммной передаче кадр посылается в сеть «без предупреждения», и никакой ответственности за его утерю протокол не несет. Предполагается, что сеть всегда готова принять кадр от конечного узла. Дейтаграммный метод работает быстро, так как никаких предварительных действий перед отправкой данных не выполняется. Однако при таком методе трудно организовать в рамках протокола отслеживание факта доставки кадра узлу назначения. Этот метод не гарантирует доставку пакета.

Передача с установлением соединения более надежна, но требует больше времени для передачи данных и вычислительных затрат от конечных узлов.

В этом случае узлу-получателю отправляется служебный кадр специального формата с предложением установить соединение. Если узел-получатель согласен с этим, то он посылает в ответ другой служебный кадр, подтверждающий установление соединения и предлагающий для данного логического соединения некоторые параметры, например идентификатор соединения, максимальное значение поля данных кадров, которые будут использоваться в рамках данного соединения, и т.п. Узел-инициатор соединения может завершить процесс установления соединения отправкой третьего служебного кадра, в котором сообщит, что предложенные параметры ему подходят. На этом логическое соединение считается установленным, и в его рамках можно передавать информационные кадры с пользовательскими данными. После передачи некоторого законченного набора данных, например определенного файла, узел инициирует разрыв данного логического соединения, посылая соответствующий служебный кадр.

Заметим, что, в отличие от протоколов дейтаграммного типа, которые поддерживают только один тип кадра - информационный, протоколы, работающие по процедуре с установлением соединения, должны поддерживать несколько типов кадров - служебные, для установления (и разрыва) соединения, и информационные, переносящие собственно пользовательские данные.

Логическое соединение обеспечивает передачу данных как в одном направлении - от инициатора соединения, так и в обоих направлениях.

Процедура установления соединения может использоваться для достижения различных целей.

Для взаимной аутентификации либо пользователей, либо оборудования (маршрутизаторы тоже могут иметь имена и пароли, которые нужны для уверенности в том, что злоумышленник не подменил корпоративный маршрутизатор и не отвел поток данных в свою сеть для анализа).

Для согласования изменяемых параметров протокола: MTU, различных тайм-аутов и т. п.

Для обнаружения и коррекции ошибок. Установление логического соединения дает точку отсчета для задания начальных значений номеров кадров. При потере нумерованного кадра приемник, во-первых, получает возможность обнаружить этот факт, а во-вторых, он может сообщить передатчику, какой в точности кадр нужно передать повторно.

В некоторых технологиях процедуру установления логического соединения используют при динамической настройке коммутаторов сети для маршрутизации всех последующих кадров, которые будут проходить через сеть в рамках данного логического соединения. Так работают сети технологий Х.25, frame relay и АТМ.

Как видно из приведенного списка, при установлении соединения могут преследоваться разные цели, в некоторых случаях - несколько одновременно. В этой главе мы рассмотрим использование логического соединения для обнаружения и коррекции ошибок, а остальные случаи будут рассматриваться в последующих главах по мере необходимости.

Обнаружение и коррекция ошибок

Канальный уровень должен обнаруживать ошибки передачи данных, связанные с искажением бит в принятом кадре данных или с потерей кадра, и по возможности их корректировать.

Большая часть протоколов канального уровня выполняет только первую задачу - обнаружение ошибок, считая, что корректировать ошибки, то есть повторно передавать данные, содержавшие искаженную информацию, должны протоколы верхних уровней. Так работают такие популярные протоколы локальных сетей, как Ethernet, Token Ring, FDDI и другие. Однако существуют протоколы канального уровня, например LLC2 или LAP-B, которые самостоятельно решают задачу восстановления искаженных или потерянных кадров.

Очевидно, что протоколы должны работать наиболее эффективно в типичных условиях работы сети. Поэтому для сетей, в которых искажения и потери кадров являются очень редкими событиями, разрабатываются протоколы типа Ethernet, в которых не предусматриваются процедуры устранения ошибок. Действительно, наличие процедур восстановления данных потребовало бы от конечных узлов дополнительных вычислительных затрат, которые в условиях надежной работы сети являлись бы избыточными.

Напротив, если в сети искажения и потери случаются часто, то желательно уже на канальном уровне использовать протокол с коррекцией ошибок, а не оставлять эту работу протоколам верхних уровней. Протоколы верхних уровней, например транспортного или прикладного, работая с большими тайм-аутами, восстановят потерянные данные с большой задержкой. В глобальных сетях первых поколений, например сетях Х.25, которые работали через ненадежные каналы связи, протоколы канального уровня всегда выполняли процедуры восстановления потерянных и искаженных кадров.

Поэтому нельзя считать, что один протокол лучше другого потому, что он восстанавливает ошибочные кадры, а другой протокол - нет. Каждый протокол должен работать в тех условиях, для которых он разработан.

Компрессия данных

Компрессия (сжатие) данных применяется для сокращения времени их передачи. Так как на компрессию данных передающая сторона тратит дополнительное время, к которому нужно еще прибавить аналогичные затраты времени на декомпрессию этих данных принимающей стороной, то выгоды от сокращения времени на передачу сжатых данных обычно бывают заметны только для низкоскоростных каналов. Этот порог скорости для современной аппаратуры составляет около 64 Кбит/с. Многие программные и аппаратные средства сети способны выполнять динамическую компрессию данных в отличие от статической, когда данные предварительно компрессируются (например, с помощью популярных архиваторов типа WinZip), а уже затем отсылаются в сеть.

На практике может использоваться ряд алгоритмов компрессии, каждый из которых применим к определенному типу данных. Некоторые модемы (называемые интеллектуальными) предлагают адаптивную компрессию, при которой в зависимости от передаваемых данных выбирается определенный алгоритм компрессии. Рассмотрим некоторые из общих алгоритмов компрессии данных.

Десятичная упаковка. Когда данные состоят только из чисел, значительную экономию можно получить путем уменьшения количества используемых на цифру бит с 7 до 4, используя простое двоичное кодирование десятичных цифр вместо кода ASCII. Просмотр таблицы ASCII показывает, что старшие три бита всех кодов десятичных цифр содержат комбинацию 011. Если все данные в кадре информации состоят из десятичных цифр, то, поместив в заголовок кадра соответствующий управляющий символ, можно существенно сократить длину кадра.

Относительное кодирование. Альтернативой десятичной упаковке при передаче числовых данных с небольшими отклонениями между последовательными цифрами является передача только этих отклонений вместе с известным опорным значением. Такой метод используется, в частности, в рассмотренном выше методе цифрового кодирования голоса ADPCM, передающем в каждом такте только разницу между соседними замерами голоса.

Символьное подавление. Часто передаваемые данные содержат большое количество повторяющихся байт. Например, при передаче черно-белого изображения черные поверхности будут порождать большое количество нулевых значений, а максимально освещенные участки изображения - большое количество байт, состоящих из всех единиц. Передатчик сканирует последовательность передаваемых байт и, если обнаруживает последовательность из трех или более одинаковых байт, заменяет ее специальной трехбайтовой последовательностью, в которой указывает значение байта, количество его повторений, а также отмечает начало этой последовательности специальным управляющим символом.

Коды переменной длины. В этом методе кодирования используется тот факт, что не все символы в передаваемом кадре встречаются с одинаковой частотой. Поэтому во многих схемах кодирования коды часто встречающихся символов заменяют кодами меньшей длины, а редко встречающихся - кодами большей длины. Такое кодирование называется также статистическим кодированием. Из-за того, что символы имеют различную длину, для передачи кадра возможна только бит-ориентированная передача.

При статистическом кодировании коды выбираются таким образом, чтобы при анализе последовательности бит можно было бы однозначно определить соответствие определенной порции бит тому или иному символу или же запрещенной комбинации бит. Если данная последовательность бит представляет собой запрещенную комбинацию, то необходимо к ней добавить еще один бит и повторить анализ. Например, если при неравномерном кодировании для наиболее часто встречающегося символа «Р» выбран код 1, состоящий из одного бита, то значение 0 однобитного кода будет запрещенным. Иначе мы сможем закодировать только два символа. Для другого часто встречающегося символа «О» можно использовать код 01, а код 00 оставить как запрещенный. Тогда для символа «А» можно выбрать код 001, для символа «П» - код 0001 и т. п.

Вообще, неравномерное кодирование наиболее эффективно, когда неравномерность распределения частот передаваемых символов достаточно велика, как при передаче длинных текстовых строк. Напротив, при передаче двоичных данных, например кодов программ, оно малоэффективно, так как 8-битовые коды при этом распределены почти равномерно.

Одним из наиболее распространенных алгоритмов, на основе которых строятся неравномерные коды, является алгоритм Хафмана, позволяющий строить коды автоматически, на основании известных частот символов. Существуют адаптивные модификации метода Хафмана, которые позволяют строить дерево кодов «на ходу», по мере поступления данных от источника.

Многие модели коммуникационного оборудования, такие как модемы, мосты, коммутаторы и маршрутизаторы, поддерживают протоколы динамической компрессии, позволяющие сократить объем передаваемой информации в 4, а иногда и в 8 раз. В таких случаях говорят, что протокол обеспечивает коэффициент сжатия 1:4 или 1:8. Существуют стандартные протоколы компрессии, например V.42bis, a также большое количество нестандартных, фирменных протоколов. Реальный коэффициент компрессии зависит от типа передаваемых данных, так, графические и текстовые данные обычно сжимаются хорошо, а коды программ - хуже.

3. Методы восстановления искаженных и потерянных кадров

Методы коррекции ошибок в вычислительных сетях основаны на повторной передаче кадра данных в том случае, если кадр теряется и не доходит до адресата или приемник обнаружил в нем искажение информации. Чтобы убедиться в необходимости повторной передачи данных, отправитель нумерует отправляемые кадры и для каждого кадра ожидает от приемника так называемой положительной квитанции - служебного кадра, извещающего о том, что исходный кадр был получен и данные в нем оказались корректными. Время этого ожидания ограничено - при отправке каждого кадра передатчик запускает таймер, и, если по его истечении положительная квитанция на получена, кадр считается утерянным. Приемник в случае получения кадра с искаженными данными может отправить отрицательную квитанцию - явное указание на то, что данный кадр нужно передать повторно.

Существуют два подхода к организации процесса обмена квитанциями: с простоями и с организацией «окна».

Метод с простоями (Idle Source)

Требует, чтобы источник, пославший кадр, ожидал получения квитанции (положительной или отрицательной) от приемника и только после этого посылал следующий кадр (или повторял искаженный). Если же квитанция не приходит в течение тайм-аута, то кадр (или квитанция) считается утерянным и его передача повторяется.

Второй метод называется методом «скользящего окна» (sliding window). В этом методе для повышения коэффициента использования линии источнику разрешается передать некоторое количество кадров в непрерывном режиме, то есть в максимально возможном для источника темпе, без получения на эти кадры положительных ответных квитанций. (Далее, где это не искажает существо рассматриваемого вопроса, положительные квитанции для краткости будут называться просто «квитанциями»). Количество кадров, которые разрешается передавать таким образом, называется размером окна. Рисунок 2.24, б иллюстрирует данный метод для окна размером в W кадров.

В начальный момент, когда еще не послано ни одного кадра, окно определяет диапазон кадров с номерами от 1 до W включительно. Источник начинает передавать кадры и получать в ответ квитанции. Для простоты предположим, что квитанции поступают в той же последовательности, что и кадры, которым они соответствуют. В момент t1 при получении первой квитанции К1 окно сдвигается на одну позицию, определяя новый диапазон от 2 до (W+1).

Процессы отправки кадров и получения квитанций идут достаточно независимо друг от друга. Рассмотрим произвольный момент времени tn, когда источник получил квитанцию на кадр с номером n. Окно сдвинулось вправо и определило диапазон разрешенных к передаче кадров от (n+1) до (W+n). Все множество кадров, выходящих из источника, можно разделить на перечисленные ниже группы.

Кадры с номерами от 1 доп. уже были отправлены и квитанции на них получены, то есть они находятся за пределами окна слева.

Кадры, начиная с номера (п+1) и кончая номером (W+n), находятся в пределах окна и потому могут быть отправлены не дожидаясь прихода какой-либо квитанции. Этот диапазон может быть разделен еще на два поддиапазона;

Кадры с номерами от (n+1) до т, которые уже отправлены, но квитанции на них еще не получены;

Кадры с номерами от m до (W+n), которые пока не отправлены, хотя запрета на это нет.

Все кадры с номерами, большими или равными (W+n+1), находятся за пределами окна справа и поэтому пока не могут быть отправлены.

Перемещение окна вдоль последовательности номеров кадров. Каждый раз, когда приходит квитанция, окно сдвигается влево, но его размер при этом не меняется и остается равным W. Заметим, что хотя в данном примере размер окна в процессе передачи остается постоянным, в реальных протоколах (например, TCP) можно встретить варианты данного алгоритма с изменяющимся размером окна.

Итак, при отправке кадра с номером n источнику разрешается передать еще W-1 кадров до получения квитанции на кадр n, так, что в сеть последним уйдет кадр с номером (W+n-1). Если же за это время квитанция на кадр n так и не пришла, то процесс передачи приостанавливается, и по истечении некоторого тайм-аута кадр n (или квитанция на него) считается утерянным, и он передается снова.

Если же поток квитанций поступает более-менее регулярно, в пределах допуска в W кадров, то скорость обмена достигает максимально возможной величины для данного канала и принятого протокола.

Метод скользящего окна более сложен в реализации, чем метод с простоями, так как передатчик должен хранить в буфере все кадры, на которые пока не получены положительные квитанции. Кроме того, требуется отслеживать несколько параметров алгоритма: размер окна W, номер кадра, на который получена квитанция, номер кадра, который еще можно передать до получения новой квитанции.

Приемник может не посылать квитанции на каждый принятый корректный кадр. Если несколько кадров пришли почти одновременно, то приемник может послать квитанцию только на последний кадр. При этом подразумевается, что все предыдущие кадры также дошли благополучно.

Некоторые методы используют отрицательные квитанции. Отрицательные квитанции бывают двух типов - групповые и избирательные. Групповая квитанция содержит номер кадра, начиная с которого нужно повторить передачу всех кадров, отправленных передатчиком в сеть. Избирательная отрицательная квитанция требует повторной передачи только одного кадра.

Метод скользящего окна реализован во многих протоколах: LLC2, LAP-B, X.25, TCP, Novell NCP Burst Mode.

Метод с простоями является частным случаем метода скользящего окна, когда размер окна равен единице.

Метод скользящего окна имеет два параметра, которые могут заметно влиять на эффективность передачи данных между передатчиком и приемником, - размер окна и величина тайм-аута ожидания квитанции. В надежных сетях, когда кадры искажаются и теряются редко, для повышения скорости обмена данными размер окна нужно увеличивать, так как при этом передатчик будет посылать кадры с меньшими паузами. В ненадежных сетях размер окна следует уменьшать, так как при частых потерях и искажениях кадров резко возрастает объем вторично передаваемых через сеть кадров, а значит, пропускная способность сети будет расходоваться во многом вхолостую - полезная пропускная способность сети будет падать.

Выбор тайм-аута зависит не от надежности сети, а от задержек передачи кадров сетью.

Во многих реализациях метода скользящего окна величина окна и тайм-аут выбираются адаптивно, в зависимости от текущего состояния сети.

Заключение

Основной задачей протоколов канального уровня является доставка кадра узлу назначения в сети определенной технологии и достаточно простой топологии.

* Асинхронные протоколы разрабатывались для обмена данными между низкоскоростными старт-стопными устройствами: телетайпами, алфавитно-цифровыми терминалами и т.п. В этих протоколах для управления обменом данными используются не кадры, а отдельные символы из нижней части кодовых таблиц ASCII или EBCDIC. Пользовательские данные могут оформляться в кадры, но байты в таких кадрах всегда отделяются друг от друга стартовыми и стоповыми сигналами.

* Синхронные протоколы посылают кадры как для отправки пользовательских данных, так и для управления обменом.

* В зависимости от способа выделения начала и конца кадра синхронные протоколы делятся на символьно-ориентированные и бит-ориентированные. В первых для этой цели используются символы кодов ASCII или EBCDIC, а в последних - специальный набор бит, называемый флагом. Бит-ориентированные протоколы более рационально расходуют поле данных кадра, так как для исключения из него значения, совпадающего с флагом, добавляют к нему только один дополнительный бит, а символьно-ориентированные протоколы добавляют целый символ.

* В дейтаграммных протоколах отсутствует процедура предварительного установления соединения, и за счет этого срочные данные отправляются в сеть без задержек.

* Протоколы с установлением соединения могут обладать многими дополнительными свойствами, отсутствующими у дейтаграммных протоколов. Наиболее часто в них реализуется такое свойство, как способность восстанавливать искаженные и потерянные кадры.

* Для обнаружения искажений наиболее популярны методы, основанные на циклических избыточных кодах (CRC), которые выявляют многократные ошибки.

* Для восстановления кадров используется метод повторной передачи на основе квитанций. Этот метод работает по алгоритму с простоями источника, а также по алгоритму скользящего окна.

* Для повышения полезной скорости передачи данных в сетях применяется динамическая компрессия данных на основе различных алгоритмов. Коэффициент сжатия зависит от типа данных и применяемого алгоритма и может колебаться в пределах от 1:2 до 1:8.

Глоссарий

Понятие

Определение

1.

Абонентская система (АС)

совокупность абонента (объекта, генерирующего и потребляющего информацию) и рабочей станции.

2.

Алгоритм маршрутизации

правило назначения выходной линии данного узла связи ТКС для передачи пакета, базирующийся на информации, содержащейся в заголовке пакета (адреса отправителя и получателя) и информации о загрузке этого узла (длина очередей пакетов) и, возможно, ТКС в целом.

3.

Аналоговая модуляция

тип физического кодирования передаваемых дискретных данных, при котором кодирование осуществляется за счет изменения параметров синусоидального несущего сигнала.

4.

Аппаратное обеспечение КС

компьютеры различных типов и назначения, оборудование узлов связи ТКС, средства.

5.

Глобальные КС (ГКС)

сети, объединяющие АС на большой территории (страны, континенты), решают проблему объединения информационных ресурсов всего человечества и организации доступа к ним с помощью территориальных сетей связи (ТСС).

6.

Полоса пропускания линии связи

непрерывный диапазон частот, в котором отношение амплитуды выходного сигнала ко входному превышает заданный предел (обычно 0,5).

7.

Помехоустойчивость линии связи

способность линии связи уменьшать на внутренних проводниках уровень помех, создаваемых во внешней среде.

8.

Прикладной процесс

различные процедуры ввода, хранения, обработки и выдачи информации, выполняемые в интересах пользователей сети и описываемые прикладными программами.

9.

Программное обеспечение (ПО) КС

совокупность общесетевого ПО, специального ПО (прикладные программные средства), базовое ПО компьютеров сети.

10.

Транспортный уровень

обеспечивает связь между коммуникационной подсетью и верхними

Список использованных источников

1. Кульгин М. Технологии корпоративных сетей. Энциклопедия. [Текст] / М. Кульгин. - СПб.: Питер, 2000.

2. Амато В. Основы организации сетей Cisco. Т. 1 и 2 / Пер. с англ. [Текст] / В. Амато. - М.: Изд. дом “Вильямс”, 2004. ISBN: 5-8459-0258-4, ISBN: 5-8459-0283-5

3. Вишневский А. Сетевые средства Windows 2000. [Текст] / А. Вишневский. - СПб.: Питер, 2000. ISBN: 5-272-00179-6

4. Вычислительные системы, сети и телекоммуникации [Текст]: учебник для вузов / А.П. Пятибратов и др. - 3-е изд. - М.: Финансы и статистика, 2008. ISBN: 978-5-279-03285-3

5. Галкин В.А. Телекоммуникации и сети [Текст]: учеб. пособие для студентов вузов по специальности "Автоматизированные системы обработки информации и управления" направления подготовки дипломированных специалистов "Информатика и вычислительная техника" / Под ред. В.А. Галкина, Ю.А. Григорьева. - М. : МГТУ им. Н.Э. Баумана, 2003.

6. Иванова Т.И. Корпоративные сети связи. [Текст] / Т.И. Иванова. - М.: Эко-Трендз, 2001. ISBN: 978-5-88405-029-7

7. Информатика. Учебник / Под ред. Макаровой, Н.В. [Текст] / Н.В. Макарова. - М.: Финансы и статистика, 2006. ISBN: 5-279-02202-0

8. Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы. [Текст] / В. Г. Олифер, Н. А Олифер. - СПб.: Питер, 2007. ISBN: 5-469-00504-6

9. Таненбаум Э. Компьютерные сети. [Текст] / Э. Таненбаум. - СПб.: Питер, 2007. ISBN: 978-5-318-00492-6

10. Шиндер Д.Л. Основы компьютерных сетей / Пер. с англ. [Текст] / Д.Л. Шиндер. - М.: Вильямс, 2003. ISBN: 5-8459-0285-1.

Размещено на Allbest.ru


Подобные документы

  • Математическая основа построения систем защиты информации в телекоммуникационных системах. Особенности методов криптографии. Принципы, методы и средства реализации защиты данных. Основы ассиметричного и симметричного шифрования-дешифрования информации.

    курсовая работа [46,9 K], добавлен 13.12.2013

  • Основные компоненты технической системы передачи информации, аппаратура для коммутации и передачи данных. Интерфейсы доступа к линиям связи. Передача дискретной информации в телекоммуникационных системах, адаптеры для сопряжения компьютера с сетью.

    презентация [1,6 M], добавлен 20.07.2015

  • Изучение радиотехнических систем передачи информации. Назначение и функции элементов модели системы передачи (и хранения) информации. Помехоустойчивое кодирование источника. Физические свойства радиоканала как среды распространения электромагнитных волн.

    реферат [47,5 K], добавлен 10.02.2009

  • Классификация линий передачи по назначению. Отличия цифровых каналов от прямопроводных соединений. Основные методы передачи данных в ЦПС. Ethernet для связи УВК с рабочими станциями ДСП и ШНЦ. Передача данных в системах МПЦ через общедоступные сети.

    реферат [65,1 K], добавлен 30.12.2010

  • Обзор существующих методов передачи информации. Передача дискретных сообщений и виды манипуляции. Преобразование непрерывного сообщения в цифровую форму. Методы повышения помехоустойчивости систем передачи информации. Разработка схемных решений устройств.

    курсовая работа [1,8 M], добавлен 11.10.2013

  • Роль внедрения информационных технологий. Особенности передачи информации, возможности и недостатки разработок многоканальных систем. Экспериментальное исследование основных параметров и характеристик. Описание принципиальной схемы приемопередатчика.

    контрольная работа [1,3 M], добавлен 19.02.2009

  • Понятие и обзор современных систем передачи информации, исследование основ преобразования сигналов и характеристик цифровых фильтров. Общая характеристика и специфические признаки процесса построения цифрового фильтра на основе полиномов Бернштейна.

    дипломная работа [740,3 K], добавлен 23.06.2011

  • Оценка моделей радиоканалов в системах доступа четвертого поколения. Основные методы оценки каналов в системах связи с использованием технологии OFDM-MIMO, их влияние на эффективность функционирования таких систем. Технология многоантенной передачи.

    дипломная работа [10,0 M], добавлен 02.02.2016

  • Задачи защиты информации в информационных и телекоммуникационных сетях. Угрозы информации. Способы их воздействия на объекты защиты информации. Традиционные и нетрадиционные меры и методы защиты информации. Информационная безопасность предприятия.

    курсовая работа [347,8 K], добавлен 08.09.2008

  • Основные теоретические принципы работы устройств оперативного контроля достоверности передачи информации. Оборудование и методика расчета достоверности приема информации о снижении цифровых систем передачи ниже пороговых значений для систем сигнализации.

    контрольная работа [90,5 K], добавлен 30.10.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.