Формирование ФМ сигнала с М-последовательностью/кодом Баркера

Внутрисигнальная модуляция и фазоманипулированные сигналы: автокорреляционная функция (АКФ), сигналы Баркера, М–последовательности, усеченные М-последовательности. Формирование видеоимпульсов в аппаратуре, их кодовые последовательности и свойства.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 12.06.2012
Размер файла 388,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Министерство образования и науки

Российской Федерации

Государственное Образовательное Учреждение

Высшего Профессионального Образования

Сибирский Государственный Аэрокосмический Университет

Имени академика М.Ф. Решетнёва

Кафедра ЭТТ

Реферат

По дисциплине радиотехнические цепи и сигналы

Тема: Формирование ФМ сигнала с М-последовательностью/кодом Баркера

Выполнил: ст. гр. Е-72

Леонов С.Н.

Принял: проф. Филимонов Н.П.

Красноярск 2010

Содержание

Фазоманипулированные сигналы

Автокорреляционная функция (АКФ)

Сигналы Баркера

М - последовательности

Усеченные М-последовательности

Литература

Фазоманипулированные сигналы

В качестве внутрисигнальной модуляции часто используют фазовую манипуляцию. Фазоманипулированные (ФМ) сигналы представляют собой последовательность радиоимпульсов равной амплитуды, начальные фазы которых изменяются по заданному закону. В большинстве случаев ФМ сигнал состоит из радиоимпульсов с двумя значениями начальных фаз: 0 и p.

Рис.1. (а) ФМ сигнал; (б) комплексная огибающая ФМ сигнала

На рисунке 1(а) приведен пример ФМ сигнала, состоящего из 7 радиоимпульсов. На рисунке 1(б) представлена огибающая (в общем случае комплексная) этого же сигнала. В рассматриваемом примере огибающая представляет собой последовательность положительных и отрицательных единичных видеоимпульсов прямоугольной формы. Такое предположение о прямоугольности импульсов, образующих ФМ сигнал, справедливо для теоретических исследований. Однако при формировании ФМ сигналов и их передаче по каналам связи с ограниченной полосой пропускания импульсы искажаются, и ФМ сигнал перестает быть таким идеальным как на рисунке 1(а). Огибающая полностью характеризует ФМ сигнал. Поэтому в работе исследуются свойства именно огибающей ФМ сигнала.

Прямоугольный импульс u(t) c единичной амплитудой и длительностью t0, составляющей основу ФМ.

Огибающую, состоящую из N единичных видеоимпульсов можно представить в виде, где амплитуда an принимает значения +1 или -1. Общая длительность ФМ сигнала T = N0. Последовательность символов (амплитуд импульсов) A = (a1, a2 … an …aN) называется кодовой последовательностью. Возможны следующие равнозначные обозначения кодовых последовательностей:

A =(111-1-11-1) = (1110010) =(+ + + - - + -), здесь N = 7.

Автокорреляционная функция (АКФ)

АКФ ФМ сигналов имеет вид типичный для всех типов широкополосных сигналов (ШПС). Нормированная АКФ состоит из центрального (основного) типа с амплитудой 1, размещенного на интервале (-t, t) и боковых (фоновых) максимумов, распределенных на интервале (-t, t) и (t, t). Амплитуды боковых типов принимают различные значения, но у сигналов с “хорошей” корреляцией они малы, т.е. существенно меньше амплитуды центрального пика. Отношение амплитуды центрального пика (в данном случае 1) к максимальной амплитуде боковых максимумов называют коэффициентом подавления К. Для произвольных ШПС с базой В К = 1.

Для ФМ ШПС К=1 .

Рис.2. АКФ семизначного кода Баркера

Пример АКФ ШПС дан на рисунке 2. Величина К существенно зависит от вида кодовой последовательности А. При правильном выборе закона формирования А можно добиться максимального подавления, а в ряде случаев - равенства амплитуд всех боковых максимумов.

Сигналы Баркера

Кодовая последовательность сигнала Баркера состоит из символов и характеризуется нормированной АКФ вида:

где l = 0, 1, ... (N-1)/2. Знак в последней строчке зависит от величины N. На рисунках 1-2 показаны ФМ сигнал, его комплексная огибающая и АКФ семизначного кода Баркера.

Из (1) следует, что одна из особенностей сигнала Баркера - равенство амплитуд всех (N-1) боковых максимумов АКФ, и все они имеют минимально возможный уровень, не превышающий 1/N. В таблице 1 приведены известные кодовые последовательности Баркера и их уровни боковых типов АКФ. Кодовые последовательности, обладающие свойствами (1), для N > 13 не найдены.

фазоманипулированный импульс модуляция автокорреляция

Таблица 1

Кодовые последовательности Баркера

Формирование и обработка сигналов Баркера

Формирование сигналов Баркера может осуществляться несколькими способами, так же, как и произвольного ФМ сигнала. Поскольку сигналы Баркера были первыми ШПС, причем с наилучшими АКФ, рассмотрим кратко один из возможных способов формирования и обработки сигналов Баркера.

Рис.3. Генератор сигнала Баркера с N=7

На рисунке 3 изображен генератор сигнала Баркера с N=7. Генератор синхроимпульсов (ГСИ) формирует узкие прямоугольные синхроимпульсы, период следования которых равен длительности сигнала Баркера Т=7ф0, а ф0 - длительность одиночного (единичного) прямоугольного импульса. Генератор синхроимпульсов запускает генератор одиночных импульсов (ГОИ), который в свою очередь формирует одиночные прямоугольные импульсы длительностью ф0 и периодом Т. Одиночные прямоугольные импульсы поступают на вход многоотводной линии задержки (МЛЗ), которая имеет N-1=6 секций с отводами через интервалы времени, равные ф0. Число отводов, включая начало линии, равно 7. Так как кодовая последовательность Баркера с N =7 имеет вид 111-1-11-1, то импульсы с первого, второго, третьего и шестого отводов (счет ведется от начала линии) поступают на вход сумматора ( + ) непосредственно, а импульсы с четвертого, пятого и седьмого отводов поступают на вход сумматора через инверторы (ИН), которые превращают положительные одиночные импульсы в отрицательные, т. е. осуществляют изменение фазы на р. Поэтому инверторы называются также фазовращателями. На выходе сумматора имеет место видеосигнал Баркера (рисунок 1(б)), который затем поступает на один вход балансного модулятора (БМ), на другой вход которого подается радиочастотное колебание на несущей частоте, формируемое генератором несущей частоты (ГНЧ). Балансный модулятор осуществляет фазовую манипуляцию радиочастотного колебания ГНЧ в соответствии с кодовой последовательностью Баркера: видеоимпульсу с амплитудой 1 соответствует радиоимпульс с фазой 0, а видеоимпульсу с амплитудой -1 - радиоимпульс с фазой р. Таким образом, на выходе балансного модулятора имеет место радиочастотный сигнал Баркера (рисунок 1(а)).

Оптимальная обработка сигналов Баркера так же, как и других ШПС, производится либо с помощью согласованных фильтров, либо с помощью корреляторов. Возможно несколько способов построения согласованных фильтров и корреляторов, отличающихся друг от друга в техническом выполнении, но обеспечивающих одно и то же максимальное отношение сигнал-помеха на выходе.

Рис.4. Согласованный фильтр сигнала Баркера с N=7

На рисунке 4 приведена схема согласованного фильтра для сигнала Баркера с N = 7. С выхода усилителя промежуточной частоты приемника сигнал поступает на согласованный фильтр одиночного импульса (СФОИ), который производит оптимальную обработку (фильтрацию) одиночного прямоугольного радиоимпульса с центральной частотой, равной промежуточной частоте приемника. На выходе СФОИ радиоимпульс имеет треугольную огибающую. Треугольные радиоимпульсы с длительностью по основанию 2ф0 поступают на МЛЗ, которая имеет 6 секций и 7 отводов (включая начало линии). Отводы следуют через ф0. Так как импульсная характеристика согласованного фильтра совпадает с зеркально отраженным сигналом, то кодовую импульсную характеристику фильтра для сигнала Баркера с N=7 следует устанавливать в соответствии с последовательностью -11-1-1111. Поэтому радиоимпульсы со второго, пятого, шестого и седьмого отводов МЛЗ поступают в сумматор ( + ) непосредственно, а радиоимпульсы с первого, третьего и четвертого отводов -- через инверторы (ИН), которые меняют фазу на р. На выходе сумматора имеет место АКФ сигнала Баркера, огибающая которой приведена рисунке 2.

М - последовательности

Среди фазоманипулированных сигналов особое значение занимают сигналы, кодовые последовательности которых являются последовательностями максимальной длины или М - последовательностями.

М - последовательности принадлежат к разряду двоичных линейных рекуррентных последовательностей и представляют собой набор N периодически повторяющихся двоичных символов. Причем каждый текущий символ dj образуется в результате сложения по модулю 2 некоторого числа m предыдущих символов, одни из которых умножаются на 1, а другие - на 0.

Для j-го символа имеем:

Где а1…аm - числа 0 или 1.

Рис.5. Генератор М-последовательности с периодом N = 26 - 1 = 63

Технически генератор М-последовательности строится в виде регистра (последовательно включенных триггеров) с отводами, с цепью обратной связи и с сумматором по модулю 2. Пример такого генератора приведен на рисунке 5.

Умножение на а1…аm в (2) означает просто наличие или отсутствие отвода, т.е. связи соответствующего триггера (разряда регистра) с сумматором. В m-разрядном регистре максимальный период равен: Nm - 1. Величина m называется памятью последовательности. Если отводы выбраны произвольно, то не всегда на выходе генератора будет наблюдаться последовательность максимальной длины. Правило выбора отводов, позволяющее получить последовательность с периодом Nm-1, предполагает найти неприводимые примитивные полиномы степени m с коэффициентами, равными 0 и 1. Не равные нулю коэффициенты в полиномах определяют номера отводов в регистре.

Так, при m=6 существует 3 примитивных многочлена:

а6, а5, а4, а3, а2, а1, а0

p1(x)=x 6 + x + 1 1 0 0 0 0 1 1

p2(x)=x 6 + x 5 + x 2 + x + 1 1 1 0 0 1 1 1

p3(x)= x 6 + x 5 + x 3 + x 2 + 1 1 1 0 1 1 0 1

На рисунке 12 реализован первый вариант.

Особенности автокорреляционной функции М-последовательности Наибольший интерес представляет нормированная автокорреляционная функция (АКФ). Различают два случая получения такой функции: в периодическом (ПАКФ) и апериодическом режимах. Периодическая АКФ имеет основной, равный единице, пик и ряд боковых выбросов, амплитуды которых 1/N. С ростом N ПАКФ приближается к идеальной, когда боковые пики становятся по сравнения с основным пренебрежимо малы.

Боковые пики АКФ в апериодическом режиме существенно больше боковых пиков ПАКФ. Среднеквадратичное значение боковых пиков (вычисленное через дисперсию) равно.

Усеченные М-последовательности

Разбивая М-последовательность (полный период N) на сегменты длительности Nс, можно получить большое число ШПС, рассматривая каждый из сегментов как самостоятельный сигнал. Если сегменты не перекрываются, то их число равно n = N/(Nc-1). Таким образом, можно получить большое число псевдослучайных последовательностей. Автокорреляционные свойства таких последовательностей значительно хуже, чем у М-последовательности той же длительности и зависят от Nc. Установленно, что у 90% сегментов uб ? 3/ vNc , а у 50% - 2 / vNc

Литература

1. Шумоподобные сигналы в системах передачи информации. Под ред. В.Б. Пестрякова. - М., “Сов. радио”, 1973, -424c.

2. Ю.С. Лёзин. Введение в теорию радиотехнических систем. - М.: Радио и связь, 1985, -384c.

3. Л.Е. Варакин. Системы связи с шумоподобными сигналами. - М.: Радио и связь, 1985, -384c.

Размещено на Allbest.ru


Подобные документы

  • Исследование основных свойств сложных и псевдошумовых сигналов. Метод инвертирования полного периода последовательности. Метод инвертирования части периода последовательности. Выводы по исследованию Кодов Голда. Сигналы типа "белый гауссовский шум".

    курсовая работа [593,0 K], добавлен 14.11.2012

  • Разработка радиотехнической системы детектирования многопозиционного цифрового кода Баркера на фоне гауссовского шума. Формирование фазово-манипулируемого сигнала и принцип его согласованной фильтрации. Разработка радиотехнических систем в среде OrCAD.

    курсовая работа [1,2 M], добавлен 18.02.2011

  • Использование в системах последовательности одиночных сигналов. Последовательности одиночных сигналов. Корреляционная функция закона модуляции последовательности одиночных сигналов. Монохроматический сигнал. Энергетический спектр принятого сигнала.

    реферат [1,3 M], добавлен 20.01.2009

  • Канальное кодирование: представление элементов двоичной последовательности, уменьшение межсимвольной интерференции. Условия работы подсистемы тактовой синхронизации на приемной стороне радиотракта. Кодопреобразование для многопозиционной модуляции.

    дипломная работа [1,0 M], добавлен 08.09.2015

  • Экспериментальное исследование принципов формирования АИМ – сигнала и его спектра. Методика и этапы восстановления непрерывного сигнала из последовательности его дискретных отсчетов в пункте приема, используемые для этого главные приборы и инструменты.

    лабораторная работа [87,1 K], добавлен 21.12.2010

  • Характеристика амплитудной модуляции, ее применения для радиовещания на низких частотах. Изучение энергии однотонального АМ-сигнала. Рассмотрение сигналов с угловой модуляцией. Спектр прямоугольного ЛЧМ-сигнала. Модуляция символьных и кодовых данных.

    курсовая работа [371,9 K], добавлен 27.05.2015

  • Получение регулярных неэквидистантных последовательностей импульсов. Автокорреляционная функция и спектральная плотность регулярной последовательности. Определение спектральной плотности одиночного импульса. Нормированная корреляционная функция.

    реферат [1,0 M], добавлен 10.04.2014

  • Блок нормирования импульса запуска. Цифровой программируемый ждущий мультивибратор. Блоки настройки и индикации. Формирование последовательности импульсов заданной частоты. Подача стартового импульса. Схема устранения влияния вибрации контактов.

    курсовая работа [986,4 K], добавлен 09.02.2013

  • Определение спектральной плотности заданного непериодического сигнала, спектра периодической последовательности заданных видеоимпульсов. Определение функции корреляции заданного видеосигнала. Спектральный метод анализа процессов в линейных цепях.

    курсовая работа [1013,1 K], добавлен 23.02.2012

  • Вычисление Z-преобразования дискретной последовательности отсчетов сигнала. Определение дискретной свертки. Порядок построения схемы нерекурсивного фильтра, которому соответствует системная функция. Отсчеты дискретного сигнала по заданным параметрам.

    контрольная работа [602,7 K], добавлен 23.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.