Цифровая система передачи непрерывных сообщений с импульсно-кодовой модуляцией по каналу с шумом

Характеристика основных принципов передачи информации с импульсно-кодовой модуляцией по каналу связи. Сущность системы передачи сообщений. Анализ генератора случайного электрического сигнала с равномерным законом распределения и нулевым средним значением.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид практическая работа
Язык русский
Дата добавления 08.05.2012
Размер файла 382,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

передача сообщение связь сигнал

В настоящее время тяжело представить себе жизнь людей без систем передачи информации. С помощью систем передачи информации соединяются в одну структуру компьютерные, телефонные и другие сети различных структур, городов и предприятий. С каждым днем растут потребности в скорости передачи информации, а главное в степени ее защищенности. Использование цифровых линий передачи информации значительно повысило и скорость передачи информации, и степень ее защищенности за счет использования в них оптического волокна и меньшей восприимчивости к помехам цифровых сигналов.

В этой теме мы будем рассматривать принципы передачи информации с импульсно-кодовой модуляцией по каналу связи. цель нашей работы Рассчитать основные характеристики системы передачи сообщений.

передача сообщение связь сигнал

Задание на курсовую работу

Рассчитать основные характеристики системы передачи сообщений (рис.1), включающий в себя источник сообщений (ИС), дискретизатор (Д), кодирующее устройство (Кодер), модулятор (Мод), линия связи, демодулятор (Дем), декодер (Дек) и фильтр-восстановитель (ФВ).

Рис. 1

Источник сообщений

Источник сообщений выдает сообщение а(t), представляющее собой непрерывный стационарный случайный процесс, мгновенные значения которого в интервале а min a max распределены равномерно, а мощность сосредоточена в полосе частот от 0 до Fc.

Исходные данные

amin,= 0В

amax,= +12,8В

Fc, = 103Гц

J=69

Вид. Мод ФМ

N0, = 5,8.10-6В2/Гц

Способ приема-когерентный

Требуется:

1. Записать аналитические выражения и построить график одномерной плотности вероятности мгновенных значений сообщения а(t).

2. Найти мат. ожидание и дисперсию сообщения а(t)

3. Построить график случайного процесса и на графике обозначить max значение сигнала, математическое ожидание и среднеквадратичное отклонение.

Вычисления:

1)

=0,078125

Рис.

2)

уа= 2,0656 В

Дискретизатор

Передача непрерывного процесса осуществляется дискретными методами. Для этого сообщение а(t) дискретизируется по времени и квантуется по уровню с равномерным шагом. Шаг квантования по уровню а= 0,1В.

Требуется:

1. Определить шаг дискретизации по времени (t).

2. Определить число уровней квантования (L).

3. Рассчитать среднюю мощность шума квантования.

4. Рассматривая дискретизатор как источник дискретного сообщения с объемом алфавита L, определить его энтропию и производительность (Н, Н'), отсчеты, взятые через интервал t считать независимыми.

Вычисления:

1) Шаг дискретизации по времени (t).

2) Число уровней квантования (L).

3) Средняя мощность шума квантования.

4) Энтропия и производительность дискретизатора как источника дискретного сообщения с объемом алфавита L (Н, Н'), считая отсчеты, взятые через интервал t независимыми.

Т.к. p(a1)= p(a2)=…= p(ai), то

Следовательно бит/символ

Производительность

Кодер

Кодирование осуществляется в два этапа. Первый этап: Производится примитивное кодирование каждого уровня квантованного сообщения k- разрядным двоичным кодом. Второй этап: К полученной k- разрядной двоичной кодовой комбинации добавляется один проверочный символ, формируемый простым суммированием по модулю 2 всех информационных символов (код (n, n-1) с одной проверкой на четность). В результате этих преобразований на выходе кодера образуется синхронная двоичная случайная последовательность b(t) (синхронный случайный телеграфный сигнал), состоящая из последовательности биполярных импульсов единичной высоты, причем положительные импульсы в ней соответствуют символу «0», а отрицательные - символу «1» кодовой комбинации.

Требуется:

1. Определить число разрядов кодовой комбинации примитивного кода k, необходимое для кодирования всех L уровней квантованного сообщения.

2. Определить избыточность кода с одной проверкой на четность.

3. Записать двоичную кодовую комбинацию, соответствующую передаче j-го уровня, считая, что при примитивном кодировании на первом этапе j-му уровню ставится в соответствии двоичная кодовая комбинация, представляющая собой запись числа j в двоичной системе счисления. В полученной кодовой комбинации указать информационные и проверочные разряды.

4. Определить число двоичных символов, выдаваемых кодером в единицу времени Vn и длительность двоичного символа T.

Вычисления.

1)

2) n=k+1=8

Таблица

1

0

1

0

0

0

1

a7

a6

а5

а4

а3

а2

а1

3) В двоичном виде проверочный разряд а8= а7+ а6+ а5+ а4+ а3+ а2+ а1

В результате получаем кодовую комбинацию:10001011;4) Vn = n/?t=8/ =16·103 бит/с;

T = 1/Vn =62,5. 10-6 с.

Модулятор

В модуляторе синхронная двоичная случайная последовательность биполярных импульсов b(t) осуществляет модуляцию гармонического переносчика Um = cos(2рft).

Фазовая модуляция (ФМ).

«0» - U0(t) = Um cos2рft;

«1» - U1(t) = -Um cos2рft.

Требуется:

1. Записать аналитическое выражение модулированного сигнала U(t)=ц(b(t)).

2. Изобразить временные диаграммы модулирующего b(t) и модулированного U(t) сигналов, соответствующие передачи j-го уровня сообщения a(t).

3. Привести выражение и начертить график корреляционной функции модулирующего сигнала В(ф).

4. Привести выражение и начертить график спектральной плотности мощности модулирующего сигнала GВ(щ).

5. Определить ширину энергетического спектра модулирующего сигнала ?FB из условия ?FB=бVk (где б выбирается в пределах от 1 до 3). Отложить полученное значение ?FB на графике GВ(щ).

6. Привести выражение и построить график энергетического спектра GU(щ) модулированного сигнала. (В случае ЧМ частоты сигналов U0(t) и U1(t) выбирать из условия их ортогональности на интервале Т).

7. Определить ширину энергетического спектра ?Fu модулированного сигнала и отложить значение ?Fu на графике Gu(щ).

Вычисления:

Рис.

Рис.

График спектральной плотности мощности модулирующего сигнала GВ(w):

Рис.

f0 = 100·Vn = 16·105 Гц; ?f=2/T=2/62,5·10-6=32·103 Гц; ?=16,32·105 Гц; -?=15,68·105 Гц.

При ФМ:

U0(t) = cos(2рf0 t)= cos(

U1(t) = cos(2рf0 t+р)=- cos

Рис.

Канал связи

Передача сигнала U(t) осуществляется по каналу с постоянными параметрами и аддитивным флуктуационным шумом n(t) с равномерным энергетическим спектром N0/2 (белый шум).

Сигнал на выходе такого канала можно записать следующем образом:

z(t) = U(t) + n(t)

Требуется:

1. Определить мощность шума в полосе частот Fk = ?Fu ;

2. Найти отношение сигнал - шум Рс ш;

3. Найти пропускную способность канала С;

4. Определить эффективность использования пропускной способности канала Кс, определив ее как отношение производительности источника Н' к пропускной способности канала С.

Вычисления:

1) Вт.

2)

Так как ;Рс = (0,5Т+0,5Т)/2Т=0,5 В2

3. С = ?FU·log2(1+Pc/PШ) =2,68·106 бит/с

4. Кс=

Демодулятор

В демодуляторе осуществляется оптимальная когерентная или некогерентная (в зависимости от варианта) обработка принимаемого сигнала z(t) = U(t) + n(t)

Требуется:

Записать алгоритм оптимального приема по критерию минимума средней вероятности ошибки при равновероятных символах в детерминированном канале с белым гауссовским шумом.

1. Нарисовать структурную схему оптимального демодулятора для заданного вида модуляции и способа приема.

2. Вычислить вероятность ошибки с оптимального демодулятора.

3. Определить, как нужно изменить энергию сигнала, чтобы при других видах модуляции и заданном способе приема обеспечить найденное значение вероятности ошибки с.

Вычисления:

1)

Для фазовой модуляции Е0/2 = Е1/2, U1 = -U0, следовательно:

2) Структурная схема оптимального демодулятора для заданного вида модуляции и способа приема.

Рис.

3) Вероятность ошибки Р оптимального когерентного демодулятора для канала с аддитивным нормальным «белым» шумом при передаче двоичных сообщений определяется следующим выражением:

P = 1/2 (1-Ф(х));

Ф(х) - функция Крампа

4. При когерентном приёме вероятность ошибки при АМ, ЧМ, ФМ определяется соотношением , которое зависит от x. х- определяется из энергии сигнала, значит энергию измерять не надо, т.к. при других видах модуляции вероятность ошибки остаётся той же. ФМ обеспечивает наибольшую помехоустойчивость. Энергетический выигрыш её составляет в четыре раза по сравнению с АМ и в два раза по сравнению с ЧМ.

Декодер

В декодере декодирование осуществляется в два этапа. На первом этапе производится обнаружение ошибок в кодовой комбинации. Если ошибки не обнаружены, то на втором этапе из нее выделяются информационные символы, а затем k - разрядная двоичная кодовая комбинация преобразуется в элемент квантованного сообщения.

Требуется:

1. Оценить обнаруживающую способность q кода (n, n-1) с одной проверкой на четность.

2. Записать алгоритм обнаружения ошибок.

3. Определить вероятность не обнаружения ошибки.

Вычисления.

1) Обнаруживающая и исправляющая способность кодов определяется - наименьшим расстоянием по Хэммингу между кодовыми комбинациями. Для нахождения необходимо знать, что определяется минимальным весом (минимальным числом единиц) по всем кодовым комбинациям (кроме нулевой, т.е. все элементы которой нули). Найдя , следует определить обнаруживающую способность q кода Хэмминга.

Теорема Хэмминга:

Для того, чтобы код позволял исправлять все ошибки в z или менее позициях, необходимо и достаточно, чтобы наименьшее расстояние между кодовыми словами было . Наш код исправляет одну ошибку (z=1):

dmin = 2; q = dmin-1 = 1

2) Кодовая последовательность: 1000101.

Если b8 =то, ошибки нет.

Если b8 ?то, ошибка есть.

3. Вероятность необнаружения ошибки определяется по формуле:

n - число разрядов, n = 8

р - вероятность ошибки в одном разряде

p = 0,0005

q - это обнаруживающая способность кода Хэмминга (q=2),

Фильтр - восстановитель.

Фильтр-восстановитель представляет собой фильтр нижних частот с частотой среза Fc.

Требуется:

1. Указать величину Fc.

2. Изобразить идеальные АЧХ и ФЧХ фильтра - восстановителя.

3. Найти импульсную характеристику g(t) идеального фильтра - восстановителя и начертить ее график.

Вычисления.

1) Fc = 103 Гц;

wср==2·р·103=6,28·103

2) Идеальная АЧХ фильтра - восстановителя имеет вид:

Рис.

Идеальная ФЧХ:

Рис.

3)

Заключение

В ходе данной работы были исследованы основные принципы передачи информации с импульсно-кодовой модуляцией по каналу связи. Были изучены все необходимые приемы и процессы происходящие с сообщением от момента его выработки в источнике до прихода его к абоненту.

Источник сообщений представляет собой генератор случайного электрического сигнала с равномерным законом распределения и нулевым средним значением. Спектр сигнала сосредоточен в полосе частот от 0 до 15кГц.

.Для эффективной передачи сигнала по каналу связи необходимо его спектр перенести в высокочастотную область - промодулировать сигнал. В качестве модуляции используется фазовая манипуляция с частотой несущего колебания 42МГц и разностью фаз для сигналов 0 и 1 равной р/2.

Из канала связи на приемной стороне сигнал попадает на демодулятор - по сути устройство, которое решает, какой символ был передан 0 или 1. Демодулятор собран по схеме оптимального приемника для ФМ сигнала. Средняя вероятность ошибки 25%. Это связано с малым отношением сигнал/шум в канале связи.

Список литературы

1.Клюев Л.Л. «Теория электрической связи». Минск, «Дизайн ПРО», 1998 г.

2.Шувалов Б.П., Захарченко Н.Б., Шварцман В.О. и др «Передача дискретных сообщений»: Под ред. Шувалова -М.; Радио и связь 1990 г.

3.А.Г. Зюко, Д.Д. Кловский, В.И. Коржик «Теория электрической связи» Радио и связь 1999г.

Размещено на Allbest.ru


Подобные документы

  • Исследование основных принципов цифровой системы передачи непрерывных сообщений с импульсно-кодовой модуляцией по каналу с шумом. Расчет источника сообщения, дискретизатора, кодера, модулятора, канала связи, демодулятора, декодера, фильтра-восстановителя.

    курсовая работа [545,1 K], добавлен 10.05.2011

  • Разработка цифровой системы передачи непрерывных сообщений с импульсно-кодовой модуляцией по каналу с шумом. Расчет значения математического ожидания, среднеквадратического отклонения и дисперсии. Составление структурной схемы модулятора и демодулятора.

    курсовая работа [1,1 M], добавлен 08.01.2012

  • Дискретные системы связи. Дифференциальная импульсно-кодовая модуляция. Квантование по уровню и кодирование сигнала. Помехоустойчивость систем связи с импульсно-кодовой модуляцией. Скорость цифрового потока. Импульсный сигнал на входе интегратора.

    реферат [128,1 K], добавлен 12.03.2011

  • Процесс преобразования аналогового сигнала в цифровой. Шаг дискретизации, его взаимосвязь с формой восстановленного сигнала. Сущность теоремы Котельникова. Процесс компандирования, его стандарты. Системы передачи информации с импульсно-кодовой модуляцией.

    презентация [190,4 K], добавлен 28.01.2015

  • Структурная схема системы связи и приемника. Выигрыш в отношении сигнал/шум при применении оптимального приемника. Применение импульсно-кодовой модуляции для передачи аналоговых сигналов. Расчет пропускной способности разработанной системы связи.

    курсовая работа [1,1 M], добавлен 09.12.2014

  • Расчет технических характеристик цифровой системы передачи непрерывных сообщений. Параметры источника непрерывных сообщений. Изучение процесса дискретизации и преобразования случайного процесса в АЦП. Принцип работы модулятора и оптимального приемника.

    курсовая работа [1,2 M], добавлен 27.09.2012

  • Изучение принципов преобразования сигналов в системе связи с импульсно-кодовой модуляцией. Осциллограммы процесса преобразования в различных режимах ИКМ. Построение графиков, отражающих зависимость напряжения на входе декодера от шага внутри сегмента.

    лабораторная работа [1014,0 K], добавлен 04.10.2013

  • Анализ системы передачи непрерывных сообщений цифровыми методами. Расчёт характеристик помехоустойчивости и других показателей качества передачи информации по каналам связи с помехами по результатам распределения относительной среднеквадратичной ошибки.

    курсовая работа [1,1 M], добавлен 14.07.2012

  • Изучение методов моделирования простейших систем в программе SystemView. Аналоговые системы связи. Дискретизация низкочастотных аналоговых сигналов. Импульсно-кодовая модуляция (pulse code modulation), линейные коды. Компандирование, дельта модулятор.

    лабораторная работа [3,2 M], добавлен 23.09.2014

  • Расчет основных характеристик системы передачи сообщений, состоящей из источника сообщений, дискретизатора, кодирующего устройства, модулятора, линии связи, демодулятора, декодера и фильтра-восстановителя. Структурная схема оптимального демодулятора.

    курсовая работа [310,0 K], добавлен 22.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.