Теория и расчет измерительных преобразователей и приборов
Характеристика цифро-аналоговых преобразователей, их применение для связи в устройствах автоматики. Анализ схемы аналого-цифрового преобразователя параллельного типа. Основные составляющие времени преобразования, максимальная частота дискретизации.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | практическая работа |
Язык | русский |
Дата добавления | 08.05.2012 |
Размер файла | 175,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
Последние десятилетия обусловлены широким внедрением в отрасли народного хозяйства средств микроэлектроники и вычислительной техники, обмен информацией с которыми обеспечивается линейными аналоговыми и цифровыми преобразователями (АЦП и ЦАП).
Современный этап характеризуется больших и сверхбольших интегральных схем ЦАП и АЦП обладающими высокими эксплуатационными параметрами: быстродействием, малыми погрешностями, многоразрядностью. Включение БИС ЦАП и АЦП единым, функционально законченным блоком сильно упростило внедрение их в приборы и установки, используемые как в научных исследованиях, так и в промышленности и дало возможность быстрого обмена информацией между аналоговыми и цифровыми устройствами.
ЦАП и АЦП
цифровой аналоговый преобразователь дискретизация
1. Цифро-аналоговые преобразователи (ЦАП) служат для преобразования информации из цифровой формы в аналоговый сигнал - суммирование токов и напряжений. ЦАП широко применяется в различных устройствах автоматики для связи цифровых ЭВМ с аналоговыми элементами и системами.
Аналого-цифровой преобразователь (АЦП) производит обратную операцию.
Принцип работы ЦАП состоит в суммировании аналоговых сигналов, пропорциональных весам разрядов входного цифрового кода, с коэффициентами, равными нулю или единице в зависимости от значения соответствующего разряда кода.
ЦАП преобразует цифровой двоичный код Q4Q3Q2Q1 в аналоговую величину, обычно напряжение Uвых.. Каждый разряд двоичного кода имеет определенный вес i-го разряда вдвое больше, чем вес (i-1)-го. Работу ЦАП можно описать следующей формулой:
Uвых=e*(Q1 1+Q2*2+Q3*4+Q4*8+…), (1)
где e - напряжение, соответствующее весу младшего разряда, Qi - значение i -го разряда двоичного кода (0 или 1).
Например, числу 1001 соответствует
Uвых=у*(1*1+0*2+0*4+1*8)=9*e, а числу 1100
Uвых=e*(0*1+0*2+1*4+1*8)=12*e.
Схема цифро-аналогового преобразователя
Эквивалентное сопротивление обведенного пунктиром двухполюсника Rэк и сопротивление нагрузки Rн образуют делитель напряжения, тогда
Uвых = E Rн / Rэк + Rн « E*Rн / Rэк (2)
Проводимость двухполюсника 1 / Rэк равна сумме проводимостей ветвей (при Qi=1 i - ветвь включена, при Qi=0 - отключена):
1 / Rэк = Q1 / 8R + Q2 / 4R + Q3 / 2R + Q4 / R (3)
Подставив (3) в (2), получаем выражение, идентичное (1)
Uвых = (8Е Rн / R)*( Q1*1 + Q2*2 + Q3*4 + Q4*8 )
Очевидно, что е = 8Е Rн / R. Выбором е можно установить требуемый масштаб аналоговой величины.
2. Аналогово-цифровые преобразователи. В информационных и управляющих системах часть (или вся) информация от датчиков бывает представлена в аналоговой форме. Для ее ввода в цифровые ЭВМ и цифровое управляющее устройство широко применяются аналогово-цифровые преобразователи (АЦП). В большинстве случаев АЦП выполняют преобразование входного напряжения или тока в двоичный цифровой код.
Существуют различные типы АЦП. Мы остановимся лишь на тех типах, которые получили в настоящее время наибольшее распространение.
Схема АЦП последовательного приближения
АЦП последовательного приближения (АЦППП)
Схема работает следующим образом. Входной аналоговый сигнал Uвх перед началом преобразования запоминается схемой выборки - хранения ВХ, что необходимо, так как в процессе преобразования необходимо изменение аналогового сигнала. Далее по команде «Пуск» с помощью сдвигового регистра последовательно во времени каждый триггер Ti, начиная со старшего разряда, переводит в положение 1 соответствующий разряд ЦАП. Напряжение U1 (или ток) с выхода ЦАП сравнивается с входным аналоговым сигналом с помощью компаратора КП. Если U0 > U1, на выходе компаратора сохраняется низкий уровень и в триггере сохраняется единица, при U0 < U1 срабатывает компаратор и переводит триггер в положение 0. После окончания цикла на выходах триггеров получается двоичный код, соответствующий (при идеальных элементах) U0 с точностью до половины младшего разряда.
Погрешность АЦППП определяется неточностью ЦАП, зоной нечувствительности и смещением нуля компаратора, а также погрешностью схемы выборки - хранения.
Поскольку в такой схеме ошибка в каком - либо разряде в дальнейшем не корректируется, необходимо, чтобы время на «взвешивание» каждого разряда было достаточно для затухания переходного процесса до уровня, соответствующего половине младшего разряда, и чтобы при разбалансе U1 - U0 на это значение компаратора успел сработать. Общее время преобразования
tпр=tвх+n(tз,к+tу+tц)+tcб,
где tвх - время, необходимое для фиксации Uвх схемой ВХ; n - число разрядов; tз,к - время задержки, вносимое компаратором; tу - время установления U1 на входе ЦАП; tц - время задержки цифровых элементов в схеме управления и срабатывания триггера; tсб - время, необходимое для сброса ЦАП в исходное состояние, включая время, необходимое для синхронизации с началом такта. Наибольшую долю в tпр обычно вносит tу, наибольшая величина которого может быть оценена следующим образом:
tу=(1+n)Тэln2,
где Tэ - эквивалентная постоянная времени на входе ЦАП. Если на его выходе включен ОУ, который полезен для уменьшения выходного сопротивления и ускорения тем самым переходного процесса, то Tэ» 1/2p fср (fср - частота среза ОУ по контуру обратной свази). При 12 - разрядном АЦП и использовании быстродействующего ЦАП с tу=100 нс время tпр близко к 1,5 мкс. В большинстве случаев tпр такого преобразователя достигает 10 - 100 мкс.
АЦП параллельного типа (АЦПП)
Существенное уменьшение tпр удается получить в АЦП параллельного типа. Его структурная схема приведена на рис3. Здесь входная аналоговая величина U0 с выхода схемы ВХ сравнивается с помощью 2n+1 - 1 компараторов с 2(2n-1) эталонными уровнями, образованными делителями из резисторов равного сопротивления. При этом срабатывают m младших компараторов, образующих на выходах схем И-НЕ нормальный единичный код, затем который с помощью специального дешифратора ДШ преобразуется в двоичный выходной сигнал.
Погрешность АЦПП определяется неточностью и нестабильностью эталонного напряжения, резистивного делителя и погрешностями компараторов. Значительную роль могут играть входные токи компараторов, если делитель недостаточно низкоомный. На рисунке 3.3.4.3 приведена структурная схема АЦП параллельного типа.
Схема АЦП параллельного типа.
Время преобразования складывается из следующих составляющих:
tпр = tвх + tз,к + a tл,сi ,
где tл,сi - Время задержки логичесих схем; k - число последовательно включенных логических схем.
При использовании компаратров со стробированием АЦПП может быть без схемы ВХ. При этом он обеспечивает наибольшее быстродействие по сравнению с любыми другими АЦП.
Рис.АЦП и ЦАП
На рисунке показана схема для преобразование аналоговой величины (напряжения) в цифровой код и обратное проебразование цифрового кода в аналоговую величину. Процесс работы схемы показан на временной диаграмме.
Рис.
Типы электронных ЦАП
1. Широтно-импульсный модулятор -- простейший тип ЦАП. Стабильный источник тока или напряжения периодически включается на время, пропорциональное преобразуемому цифровому коду, далее полученная импульсная последовательность фильтруется аналоговым фильтром низких частот. Такой способ часто используется для управления скоростью электромоторов, а также становится популярным в Hi-Fi (класс аппаратуры) аудиотехнике;
ШИП -- широтно-импульсный преобразователь, генерирующий ШИМ-сигнал по заданному значению управляющего напряжения. Основное достоинство ШИП -- высокий КПД его усилителей мощности, который достигается за счёт использования их исключительно в ключевом режиме. Это значительно уменьшает выделение мощности на силовом преобразователе (СП).
ШИМ использует транзисторы (могут быть и др. элементы) не в активном (правильнее будет сказать - линейном), а в ключевом режиме, то есть транзистор всё время или разомкнут (выключен), или замкнут (находится в состоянии насыщения). В первом случае транзистор имеет бесконечное сопротивление, поэтому ток в цепи не течёт, и, хотя всё напряжение питания падает на транзисторе, то есть КПД=0 %, в абсолютном выражении выделяемая на транзисторе мощность равна нулю. Во втором случае сопротивление транзистора крайне мало, и, следовательно, падение напряжения на нём близко к нулю -- выделяемая мощность так же мала.
1.
2.
Принцип работы ШИМ
ШИМ есть импульсный сигнал постоянной частоты и переменной скважности, то есть отношения периода следования импульса к его длительности. С помощью задания скважности (длительности импульсов) можно менять среднее напряжение на выходе ШИМ.
Генерируется аналоговым компаратором, на отрицательный вход которого подаётся опорный сигнал в виде «пилы» или «треугольника», а на положительный -- собственно сам модулируемый непрерывный аналоговый сигнал. Частота импульсов соответствует частоте «зубьев» пилы. Ту часть периода, когда входной сигнал выше опорного, на выходе получается единица, ниже -- нуль.
В цифровой технике, выходы которой могут принимать только одно из двух значений, приближение желаемого среднего уровня выхода при помощи ШИМ является совершенно естественным. Схема настолько же проста: пилообразный сигнал генерируется N-битным счётчиком. Цифровые устройства (ЦШИП) работают на фиксированной частоте, обычно намного превышающей реакцию управляемых установок (передискретизация). В периоды между фронтами тактовых импульсов, выход ЦШИП остаётся стабильным, на нём действует либо низкий уровень либо высокий, в зависимости от выхода цифрового компаратора, сравнивающего значение счётчика с уровнем приближаемого цифрового сигнала V(n). Выход за много тактов можно трактовать как череду импульсов с двумя возможными значениями 0 и 1, сменяющими друг-друга каждый такт Т. Частота появления единичных импульсов получается пропорциональной уровню приближаемого сигнала ~V(n). Единицы, следующие одна за другой, формируют контур одного, более широкого импульса. Длительности полученных импульсов переменной ширины ~V(n), кратны периоду тактирования T, а частота равна 1/(T*2N). Низкая частота означает длительные, относительно T, периоды постоянства сигнала одного уровня, что даёт невысокую равномерность распределения импульсов.
Описанная цифровая схема генерации подпадает под определение однобитной (двухуровневой) импульсно-кодовой модуляции (ИКМ). 1-битную ИКМ можно рассматривать в терминах ШИМ как серию импульсов частотой 1/T и шириной 0 либо T. Добиться усреднения за менее короткий промежуток времени позволяет имеющаяся передискретизация. Высоким качеством обладает такая разновидность однобитной ИКМ, как импульсно-плотностная модуляция, которая ещё именуется импульсно-частотной модуляцией. Восстанавливается непрерывный аналоговый сигнал арифметическим усреднением импульсов за много периодов при помощи простейшего фильтра низких частот. Хотя обычно даже этого не требуется, так как электромеханические составляющие привода обладают индуктивностью, а объект управления (ОУ) -- инерцией, импульсы с выхода ШИП сглаживаются и ОУ, при достаточной частоте ШИМ-сигнала, ведёт себя как при управлении обычным аналоговым сигналом.
Широтно-импульсная модуляция (ШИМ)-- приближение желаемого сигнала (многоуровневого или непрерывного) к действительным бинарным сигналам (с двумя уровнями - вкл/выкл), так, что, в среднем, за некоторый отрезок времени, их значения равны. Формально, это можно записать так:
,
где x(t) - желаемый входной сигнал в пределе от t1 до t2, а ?Ti - продолжительность i -го ШИМ импульса, каждого с амплитудой A. ?Ti подбирается таким образом, что суммарные площади (энергии) обеих величин приблизительно равны за достаточно продолжительный промежуток времени, равны также и средние значения величин за период:
.
Управляемыми "уровнями", как правило, являются параметры питания силовой установки, например, напряжение импульсных преобразователей /регуляторов постоянного напряжения/или скорость электродвигателя. Для импульсных источников x(t) = Uconst стабилизации.
Основной причиной внедрения ШИМ является сложность обеспечения произвольным напряжением. Есть некое базовое постоянное напряжение питания (в сети, от аккумуляторов и пр.) и на его основе нужно получить более низкое произвольное и уже им запитывать электродвигатели или иное оборудование. Самый простой вариант - делитель напряжения, но он обладает пониженным КПД, повышенным выделением тепла и расходом энергии. Другой вариант - транзисторная схема. Она позволяет регулировать напряжение без использования механики. Проблема в том, что транзисторы греются больше всего в полуоткрытом состоянии (50%). И если с таким КПД ещё "можно жить", то выделение тепла, особенно в промышленных масштабах сводит всю идею на нет. Именно поэтому было решено использовать транзисторную схему, но только в пограничных состояниямх (вкл/выкл), а полученный выход сглаживать LC-цепочкой (фильтром) при необходимости. Такой подход весьма энергоэффективен. ШИМ широко применяется повсеместно. Если вы читаете эту статью на LCD-мониторе (телефоне/КПК/... с LCD-подсветкой), то яркость подсветки регулируется ШИМ. На старых мониторах можно убавить яркость и услышать как ШИМ начинает пищать (очень тихий писк частотой в несколько килогерц). Так же "пищат" плавно мигающие LED-лампочки, например, в ноутбуках. Очень хорошо слышно пищание ШИМ по ночам в тишине.
В качетве ШИМ можно использовать даже COM-порт. Т.к. 0 передаётся как 0 0000 0000 1 (8 бит данных + старт/стоп), а 255 как 0 1111 1111 1, то диапазон выходных напряжений - 10-90% с шагом в 10%.
ЦАП передискретизации основаны на изменяемой плотности импульсов. Передискретизация позволяет использовать ЦАП с меньшей разрядностью для достижения большей разрядности итогового преобразования; часто дельта-сигма ЦАП строится на основе простейшего однобитного ЦАП, который является практически линейным. На ЦАП малой разрядности поступает импульсный сигнал с модулированной плотностью импульсов (c постоянной длительностью импульса, но с изменяемой скважностью), создаваемый с использованием отрицательной обратной связи. Отрицательная обратная связь выступает в роли фильтра высоких частот для шума квантования. Большинство ЦАП большой разрядности (более 16 бит) построены на этом принципе вследствие его высокой линейности и низкой стоимости. Быстродействие дельта-сигма ЦАП достигает сотни тысяч отсчетов в секунду, разрядность -- до 24 бит. Для генерации сигнала с модулированной плотностью импульсов может быть использован простой дельта-сигма модулятор первого порядка или более высокого порядка как MASH (англ. Multi stage noise SHaping). С увеличением частоты передискретизации смягчаются требования, предъявляемые к выходному фильтру низких частот и улучшается подавление шума квантования;
ЦАП взвешивающего типа, в котором каждому биту преобразуемого двоичного кода соответствует резистор или источник тока, подключенный на общую точку суммирования. Сила тока источника (проводимость резистора) пропорциональна весу бита, которому он соответствует. Таким образом, все ненулевые биты кода суммируются с весом. Взвешивающий метод один из самых быстрых, но ему свойственна низкая точность из-за необходимости наличия набора множества различных прецизионных источников или резисторов. По этой причине взвешивающие ЦАП имеют разрядность не более восьми бит;
ЦАП лестничного типа (цепная R-2R схема). В R-2R ЦАП значения создаются в специальной схеме, состоящей из резисторов с сопротивлениями R и 2R. Это позволяет существенно улучшить точность по сравнению с обычным взвешивающим ЦАП, так как сравнительно просто изготовить набор прецизионных элементов с одинаковыми параметрами. ЦАП типа R-2R позволяют отодвинуть ограничения по разрядности. С лазерной подгонкой резисторов на одной подложке достигается точность 20-22 бита. Основное время на преобразование тратится в операционном усилителе, поэтому он должен иметь максимальное быстродействие. Быстродействие ЦАП единицы микросекунд и ниже (т.е. наносекунды);
Характеристики
ЦАП находятся в начале аналогового тракта любой системы, поэтому параметры ЦАП во многом определяют параметры всей системы в целом. Далее перечислены наиболее важные характеристики ЦАП.
· Разрядность -- количество различных уровней выходного сигнала, которые ЦАП может воспроизвести. Обычно задается в битах; количество бит есть логарифм по основанию 2 от количества уровней. Например, однобитный ЦАП способен воспроизвести два (21) уровня, а восьмибитный -- 256 (28) уровней. Разрядность тесно связана с эффективной разрядностью, которая показывает реальное разрешение, достижимое на данном ЦАП.
· Максимальная частота дискретизации -- максимальная частота, на которой ЦАП может работать, выдавая на выходе корректный результат. В соответствии с теоремой Шенона-Найквиста (известной также как теорема Котельникова), для корректного воспроизведения аналогового сигнала из цифровой формы необходимо, чтобы частота дискретизации была не менее, чем удвоенная максимальная частота в спектре сигнала. Например, для воспроизведения всего слышимого человеком звукового диапазона частот, спектр которого простирается до 20 кГц, необходимо, чтобы звуковой сигнал был дискретизован с частотой не менее 40 кГц. Стандарт Audio CD устанавливает частоту дискретизации звукового сигнала 44,1 кГц; для воспроизведения данного сигнала понадобится ЦАП, способный работать на этой частоте. В дешевых компьютерных звуковых картах частота дискретизации составляет 48 кГц. Сигналы, дискретизованные на других частотах, подвергаются передискретизации до 48 кГц, что частично ухудшает качество сигнала.
· Монотонность -- свойство ЦАП увеличивать аналоговый выходной сигнал при увеличении входного кода.
· THD+N (суммарные гармонические искажения + шум) -- мера искажений и шума вносимых в сигнал ЦАПом. Выражается в процентах мощности гармоник и шума в выходном сигнале. Важный параметр при малосигнальных применениях ЦАП.
· Динамический диапазон -- соотношение наибольшего и наименьшего сигналов, которые может воспроизвести ЦАП, выражается в децибелах. Данный параметр связан с разрядностью и шумовым порогом.
· Статические характеристики:
o DNL (дифференциальная нелинейность) характеризует, насколько приращение аналогового сигнала, полученное при увеличении кода на 1 младший значащий разряд (МЗР), отличается от правильного значения;
o INL (интегральная нелинейность) характеризует, насколько передаточная характеристика ЦАП отличается от идеальной. Идеальная характеристика строго линейна; INL показывает, насколько напряжение на выходе ЦАП при заданном коде отстоит от линейной характеристики; выражается в МЗР;
o усиление;
o смещение.
· Частотные характеристики:
o SNDR (отношение сигнал/шум+искажения) характеризует в децибелах отношение мощности выходного сигнала к суммарной мощности шума и гармонических искажений;
o HDi (коэффициент i-й гармоники) характеризует отношение i-й гармоники к основной гармонике;
o THD (коэффициент гармонических искажений) -- отношение суммарной мощности всех гармоник (кроме первой) к мощности первой гармоники.
Таблица. Выбор ЦАП
Наименование ЦАП |
Разрядность, бит |
Число каналов |
Тип выхода |
Время установ., мкс |
Интерфейс |
Внутренний ИОН |
Напряж. питания, В |
Мощность потр. мВт |
Примечание |
|
ЦАП широкого применения |
||||||||||
572ПА1 |
10 |
1 |
I |
5 |
- |
Нет |
5; 15 |
30 |
На МОП-ключах, перемножающий |
|
МАХ504 |
10 |
1 |
U |
25 |
Посл. |
Есть |
5 или +/-5 |
2 |
На МОП-ключах, с инверсной резистивной матрицей |
|
594ПА1 |
12 |
1 |
I |
3,5 |
- |
Нет |
+5, -15 |
600 |
На токовых ключах |
|
МАХ527 |
12 |
4 |
U |
3 |
Парал. |
Нет |
+/-5 |
110 |
Загрузка входных слов по 8-ми выводной шине |
|
DAC8512 |
12 |
1 |
U |
16 |
Посл. |
Есть |
5 |
5 |
||
Микромощные ЦАП |
||||||||||
МАХ515 |
10 |
1 |
U |
25 |
Посл. |
Нет |
5 |
0,7 |
Перемножающий, в 8-ми выводном корпусе |
|
МАХ530 |
12 |
1 |
U |
25 |
Парал. |
Есть |
5 или +/-5 |
0,75 |
Перемножающий, потребление - 0,2 мВт в экономичном режиме |
|
МАХ550В |
8 |
1 |
U |
4 |
Посл. |
Нет |
2,5:5 |
0,2 |
Потребление 5 мкВт в экономичном режиме |
|
Прецизионные ЦАП |
||||||||||
AD7846 |
16 |
1 |
U |
9 |
Парал. |
Нет |
+/-15 |
100 |
Интегральная нелинейность <= 2 ЕМР |
|
AD7244 |
14 |
2 |
U |
4 |
Посл. |
Есть |
+5 |
200 |
Интегральная нелинейность <= 2 ЕМР |
|
AD760 |
18 |
1 |
U |
13 |
Посл./ Парал. |
Есть |
+5,+/-15 |
700 |
Интегральная нелинейность <= 1 ЕМР |
|
LTC1650 |
16 |
1 |
U |
4 |
Посл. |
Нет |
+/-5 |
50 |
Перемножающий |
|
Быстродействующие ЦАП |
||||||||||
AD9720 |
10 |
1 |
I |
4,5 нс |
Парал. |
Есть |
-5,2 |
1100 |
Площадь выбросов <= 1,5 пВс |
|
AD9774 |
14 |
1 |
I |
35 |
Парал. |
Есть |
5 |
1125 |
Площадь выбросов <= 5 пВс |
|
AD768 |
16 |
1 |
I |
25 нс |
Парал. |
Есть |
+/- 5 |
460 |
Интегральная нелинейность <= 4 ЕМР |
|
1118ПА3 |
8 |
1 |
I |
10 нс |
- |
Есть |
5, -5,2 |
500 |
По входам совместим с ЭСЛ |
По заданным параметрам выбираем AD7846:
одноканальный 16-разрядный цифро-аналоговый преобразователь (ЦАП), поставляемый в 16-выводном корпусе SSOP. Его интегральная нелинейность (INL) и дифференциальная нелинейность (DNL) не превышает 1 единицу младшего разряда в диапазоне температур от -40 до +125°C. На кристалле имеется встроенный источник опорного напряжения, что упрощает процесс разработки и снижает размеры и стоимость устройства. Микросхема AD7846 управляется через удобный 3-проводной интерфейс, совместимый с интерфейсами MICROWIRE™, SPI™, QSPI™ и интерфейсом DSP. Данные подаются в ЦАП в виде последовательного 16-разрядного слова. Выходной сигнал будет иметь размах ±13.6 В при напряжении питания ±15 В. Вводимые данные доступны с вывода SDO (serial data output), если необходимо объединить несколько ЦАП в группу, или получить данные из ЦАП.
Дополнительные особенности данного ЦАП включают: схему удержания выходного сигнала на нуле в моменты включения/выключения, "спящий" режим малого энергопотребления (sleep) и возможность асинхронного обновления данных на выходе при помощи вывода LDAC. ИС AD5570 работает при напряжении питания от ±12 В до ±15 В. ИС AD7846 пополняет семейство высокоточных биполярных ЦАП фирмы Analog Devices с параллельными интерфейсами: AD5570, AD660 и AD669; и с последовательным интерфейсом AD7849.
Применение
Микросхемы AD7846 применяются в устройствах вывода, сопряжения и отображения информации, совместно с универсальными осциллографами и графопостроителями, в системах автоматизации производственных процессов, аппаратуре для физических экспериментов и др.
Таблица. Технические характеристики AD7846
Производитель |
Analog Devices, Inc. |
|
Время установки: |
7 мкс |
|
Типовая потребляемая мощность: |
155 мВт |
|
Температура хранения: |
-65...150 °C |
|
Вес |
4.150 г |
|
Тип интерфейса: |
Параллельный |
|
Разрешение: |
16 |
|
Количество выходов: |
1 |
|
Рабочая температура: |
-40...85 °C |
Литература
1. Автоматизация измерений и контроля электрических и неэлектрических величин. / Под ред. А.А.Сазонова. - М.: Изд-во стандартов, 1987. 328с.
2. Куликовский К.Л., Купер В.Я. Методы и средства измерений. -М.: Энергоатомиздат,1986. 448с.
3. Хофманн Д.Техника измерений и обеспечение качества: Справочная книга. - М.: Энергоатомиздат,1983. 472с.
4. Метрологическое обеспечение электронных средств измерений электрических величин: Справочная книга. /А.М.Федоров, М.Я.Цыган, В.И. Мичурин. - Л.: Энергоатомиздат, Ленингр. отд-ние, 1988. 208с.
Размещено на Allbest.ru
Подобные документы
Применение аналого-цифровых преобразователей (АЦП) для преобразования непрерывных сигналов в дискретные. Осуществление преобразования цифрового сигнала в аналоговый с помощью цифроаналоговых преобразователей (ЦАП). Анализ принципов работы АЦП и ЦАП.
лабораторная работа [264,7 K], добавлен 27.01.2013Сущность понятий термопара и терморезистор. Основные виды тепловых преобразователей. Применение термоэлектрических преобразователей в устройствах для измерения температуры. Характерные свойства металлов, применяемых для изготовления терморезисторов.
контрольная работа [34,5 K], добавлен 18.11.2010Задачи применения аналого-цифровых преобразователей в радиопередатчиках. Особенности цифро-аналоговых преобразователей (ЦАП) для работы в низкочастотных трактах, системах управления и специализированных быстродействующих ЦАП с высоким разрешением.
курсовая работа [825,8 K], добавлен 15.01.2011Понятие аналого-цифрового преобразователя, процедура преобразования непрерывного сигнала. Определение процедур дискретизации и квантования. Место АЦП при выполнении операции дискретизации. Классификация существующих АЦП, их виды и основные параметры.
курсовая работа [490,2 K], добавлен 27.10.2010Расчет тактовой частоты, параметров электронной цепи. Определение ошибки преобразования. Выбор резисторов, триггера, счетчика, генераторов, формирователя импульсов, компаратора. Разработка полной принципиальной схемы аналого-цифрового преобразователя.
контрольная работа [405,1 K], добавлен 23.12.2014Описание работы однополярного аналого-цифрового преобразователя. Расчет эмиттерного повторителя и проектирование схемы высокочастотного аналого-цифрового преобразователя. Разработка печатной платы устройства, технология её монтажа и проверка надежности.
курсовая работа [761,6 K], добавлен 27.06.2014Аналого-цифровой преобразователь, разрешение и типы преобразования. Точность и ошибки квантования. Частота дискретизации и наложение спектров. Подмешивание псевдослучайных сигналов и передискретизация. Основные аппаратные характеристики микроконтроллера.
дипломная работа [635,4 K], добавлен 23.03.2013Особенности архитектуры и принцип работы конвейерных аналого-цифровых преобразователей. Использование цифровой корректировки для устранения избыточности. Схемы КМОП ключа, выборки-хранения, компаратора, умножающего цифро-аналогового преобразователя.
курсовая работа [2,4 M], добавлен 06.02.2013Характеристики измерительных преобразователей. Надежность средств измерений. Выходное напряжение тахогенераторов. Основные характеристики, определяющие качество преобразователей. Алгоритмические методы повышения качества измерительных преобразователей.
курсовая работа [266,1 K], добавлен 09.09.2016Устройство, принцип действия, описание измерительных преобразователей механического сигнала в виде упругой балки, пьезоэлектрического, емкостного, фотоэлектрического и электромагнитного преобразователей. Оценка их числовых значений с помощью расчетов.
курсовая работа [843,2 K], добавлен 11.11.2013