Технология ADSL

Технология асимметричной цифровой абонентской линии (ADSL - Asymmetric Digital Subscriber Line): общее описание технологии, области применения, проблемы, связанные с ее применением. Технологические характеристики оборудования ADSL компании "Алкатель".

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 16.02.2012
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат: "Технология ADSL"

Содержание

Введение

I. Технология асимметричной цифровой абонентской линии (ADSL)

1.1 Общее описание технологии ADSL

1.2 Области применения ADSL

1.3 Проблемы, связанные с применением ADSL

1.4 Решение ADSL проблем

II. Технологические характеристики оборудования ADSL компании “Алкатель”

2.1 Общее описание оборудования ADSL

2.2 Мультиплексор ASAM - функциональное описание

2.3 Описание транспортной системы

2.4 Функциональное описание сетевого ADSL-окончания (ANT)

III. Тестирование

Заключение

Список литературы

Введение

В настоящее время известны и широко используются в городских условиях следующие средства для организации "последней мили": телефонные медные провода; волоконно-оптические кабели; телевизионные кабельные сети; радиоэфир (технология "радио-Ethernet"); каналы спутникового телевидения

Традиционные технологии, которые были до настоящего времени разработаны для высокоскоростной передачи данных или доступа в сеть Интернет, достаточно дороги, причем не только на этапе внедрения, но и при эксплуатации, в то время как эффективные с экономической точки зрения технологии не обеспечивали необходимой пользователям скорости передачи данных. Большинство пользователей все еще вынуждены применять для получения доступа в сеть Интернет аналоговые модемы, предназначенные для использования на телефонных линиях.

Возможности высокоскоростной передачи данных долгие годы не распространялись на миллионы представителей мелкого бизнеса и частных абонентов, которые по понятным экономическим соображениям не могут себе позволить содержать выделенную оптико-волоконную линию. И хотя потребность этих групп абонентов в технологиях цифровой передачи постоянно росла и растет, до последнего времени им оставалось полагаться только на те средства передачи данных, которые используют линии телефонной сети общего пользования. Технологии DSL (Цифровая абонентская линия) являются одним из главных средств решения проблем такого рода.

Медная абонентская телефонная линия находится в стадии эволюционного перехода от аналоговой сети, предназначенной только для обеспечения телефонной связи, к широкополосной цифровой сети, способной обеспечить передачу голоса, высокоскоростную передачу данных, а также работу других не менее важных коммуникационных служб. Поддержание работы такой сети требует не только наличия соответствующего современного оборудования, но и совершенно нового подхода к управлению работой кабельной абонентской телефонной сети.

Сеть, состоящая из пар витых проводов, которая изначально предназначалась только для обеспечения телефонной связи между различными абонентами, постепенно превращается в сеть широкополосных каналов, способных поддержать высокоскоростную передачу данных и другие широкополосные телекоммуникационные службы. Разработанная для аналоговых телефонных линий технология (аналоговые модемы, предназначенные для передачи по телефонным линиям) имеет очень ограниченную скорость передачи данных - до 56 Кбит/с. Но, благодаря использованию на абонентской кабельной сети современных технологий, разработанных специально для витых пар проводов, те же самые линии, которые ранее использовались для традиционной телефонной связи и передачи данных могут поддерживать экономически эффективную высокоскоростную передачу данных, при этом сохраняя возможности одновременного использования абонентских линий и для традиционной телефонной связи. Новую ступень развития удалось преодолеть благодаря использованию технологий DSL.

Для конечных пользователей технологии DSL обеспечивают высокоскоростное и надежное соединение между сетями или с сетью Интернет, а телефонные компании получают возможность исключить потоки данных из своего коммутационного оборудования, оставляя его исключительно для традиционной телефонной связи.

Обеспечение высокоскоростной передачи данных по медной двухпроводной абонентской телефонной линии достигается установкой оборудования DSL на абонентском конце линии и на "конечной остановке" магистральной сети высокоскоростной передачи данных, которая должна находиться на телефонной станции, к которой подключена данная абонентская линия. Если на абонентской линии с использованием технологии DSL организована высокоскоростная передача данных, информация передается в виде цифровых сигналов в полосе гораздо более высоких частот, чем та, которая обычно используется для традиционной аналоговой телефонной связи. Это позволяет значительно расширить коммуникационные возможности существующих витых пар телефонных проводов.

Использование технологий DSL на абонентской телефонной линии позволило превратить абонентскую кабельную сеть в часть сети высокоскоростной передачи данных. Телефонные компании получили возможность увеличить свои прибыли, используя существующую кабельную телефонную сеть для предоставления своим абонентам возможности высокоскоростной передачи данных по доступной цене.

Кроме обеспечения высокоскоростной передачи данных, технологии DSL являются эффективных средством организации многоканальных служб телефонной связи. С помощью технологии VoDSL (голос по DSL) можно объединить большое количество каналов телефонной (голосовой) связи и передать их по одной абонентской линии, на которой установлено оборудование DSL.

Более того, широкополосные сети, построенные на базе технологии DSL, не ограничены только организацией многоканальной голосовой связи или высокоскоростной передачи данных. Они представляют собой базовую сеть для внедрения других служб, непременно требующих для своей работы широкой полосы частот.

Обеспечение доступа в сеть Интернет является одной из основных функций современных цифровых сетей. Ширина используемой полосы частот зависит от применяемой технологии высокоскоростной передачи данных.

Организация видеоконференций требует симметричной передачи данных. Так как при организации видеоконференций необходимо передавать и голос и видеосигнал, то такая служба требует наиболее широкой частотной полосы по сравнению с другими службами. При этом минимальная задержка в передачи или потеря части информации могут быть замечены немедленно.

Организация службы видео по запросу требует установки асимметричного соединения. Восходящий поток передачи данных (от пользователя в сеть) используется для передачи пользователем сигналов управления (таких, как воспроизведение, остановка, пауза, перемотка и т.п.). Нисходящий поток передачи данных используется для передачи пользователю запрошенного видеосигнала.

Для обеспечения возможности организации новых служб сеть абонентских двухпроводных телефонных линий должна пройти определенный этап развития от аналоговой узкополосной сети, предназначенной для передачи только телефонных разговоров, до цифровой широкополосной сети, предназначенной не только для передачи голоса, но и для передачи данных и видеосигналов.

Настоятельная потребность в высокоскоростной передаче данных привела к созданию технологий и соответствующего оборудования DSL. Для обеспечения должного уровня обслуживания, например, в городах, оборудование доступа должно быть установлено на сотнях телефонных станций. Только после установки необходимого оборудования можно предлагать данную услугу потенциальным пользователям. Предоставление абонентам услуги высокоскоростной передачи данных включает в себя установку необходимого оборудования у абонента, правильное подключение и подготовку линии, соединяющей оборудование пользователя с тем оборудованием, которое установлено на телефонной станции, и начало обслуживания. При этом существует и потребность в подготовке кадров, обладающих умением работать с оборудованием и технологиями DSL, для всех организаций, участвующих в предоставлении данной услуги.

Не все линии поддерживают технологии DSL. Технические специалисты телефонных компаний должны уметь квалифицировать линии не только с точки зрения возможности их использования для высокоскоростной передачи данных с использованием технологии DSL, но и для определения конкретной технологии DSL, которая может использоваться на данной абонентской линии. Идеально, если хотя бы проверка линий потенциальных пользователей будет проведена заранее, что позволит после поступления от любого из этих пользователей запроса на обслуживание практически без задержки предоставить ему требуемую услугу.

Провайдеры должны иметь физический доступ к абонентским линиям и проверочное оборудование, позволяющее дистанционно анализировать цифровые высокочастотные сигналы и состояние физической линии, что позволит контролировать работу абонентской линии, искать и устранять появляющиеся неисправности.

При использовании стандартной аналоговой телефонной службы абонент набирает номер, который позволяет коммутационному оборудованию телефонной сети установить соединение с другим абонентом или модемом. В случае неисправности, например, модема провайдера, происходит разъединение и для установки соединения абонент должен снова набрать телефонный номер. Соединение DSL является постоянно включенным соединением, которое соединяет оборудование пользователя с мультиплексором доступа. В случае повреждения на станции оборудования, обеспечивающего соединение с данным пользователем, последний не будет получать обслуживание до устранения провайдером неисправности в своем оборудовании. Поэтому на случай повреждения оборудования обеспечения доступа провайдер должен иметь возможность быстро переключить пользователя на резервное оборудование и устранить неисправность.

По мере того, как сети становятся все более сложными с точки зрения предоставляемых услуг и выполняемых функций, системы управления также должны развиваться. Усовершенствованные средства и инструменты управления снижают общие расходы на контроль состояния сети и управление.

В наши дни технологии, обеспечивающие высокоскоростной доступ в сеть Интернет и соединение сетей между собой, доступны как никогда. Технологии DSL позволяют расширить использование таких услуг на те сегменты рынка, которые ранее не были охвачены. Однако широкомасштабное внедрение новых технологий приводит к постепенному переходу от аналоговой абонентской сети к цифровой абонентской сети. Переход на новую ступень развития приводит не только к созданию оборудования нового поколения, но и требует использования соответствующих приборов, обучения обслуживающего персонала новым методам работы и совершенно другого подхода к вопросам управления сетью абонентских телефонных линий.

I. Технология асинхронной цифровой абонентской линии

1.1 Общее описание технологии ADSL

Всем хорошо известны возможности медной витой пары по передаче высокочастотного аналогового сигнала. Аналоговые модемы позволяют достигать скоростей до 28 Кбит/с по стандартному телефонному каналу. Используя схожие методы модуляции, технология ADSL позволяет достичь скорости нисходящего потока (от станции к пользователю) до нескольких Мбит/с. На низкоскоростном канале от пользователя к станции эта технология позволяет пользователю управлять нисходящим потоком. Необходимо отметить, что современные алгоритмы модуляции и кодирования обеспечивают скорость ADSL, которая приближается к теоретическому пределу.

Высокая скорость нисходящего потока выбрана потому, что большинство домашних пользовательских приложений являются асимметричными. Бизнес пользователи, которым необходимы симметричные высокоскоростные приложения, используют оптический или коаксиальный кабель для обеспечения высокоскоростного двустороннего обмена данными. Поэтому технология ADSL была разработана в первую очередь для рынка домашних пользователей.

В связи с этим, пользователь может продолжать пользоваться уже имеющейся телефонной связью. На практике это означает, что пользователь может осуществлять телефонные вызовы во время передачи данных с использованием ADSL оборудования.

Краткая история эволюции модемов использующих неэкранированную витую пару (UTP)

В 1881 Грэхем Белл изобрел аналоговый модем, т.е. телефон. После этого потребовалось 80 лет, чтобы изобрести цифровые модемы. В таблице 1.1 приведена краткая история модемов.

Модемы, использующие стандартный телефонный канал

Таблица 1.1 Модемы использующие канал ТЧ

Год

Скорость

Модуляция

1960

300-1.2 Кбит/с (V.21,V23)

ЧМ

1968

2.4 Кбит/с (V.26)

ДОФМ (QPSK)

1972

4.8 Кбит/с (V.27)

ТОФМ (8-PSK)

1976

9.6 Кбит/с (V.29)

КАМ-16 (16-QAM)

1986

14.4 Кбит/с (V.33)

КАМ-64 со сверточным кодированием (64-QAM+TCM)

1989

19.2 Кбит/с (V.33bis)

КАМ-64 со сверточным кодированием (64-QAM+TCM)|

1993

28.8 Кбит/с (V.34)

Цифровая многоканальная (DMT)

Модемы, использующие выделенную пару симметричного кабеля

Таблица 1.2 Модемы, использующие выделенные пары симметричного кабеля

Год

Технология

Описание (скорость)

Расстояние/ Диаметр жилы

1985

U-IC

Дуплексная передача на скорости 160 Кбит/с по одной неэкранированной паре

8-10 км максимально. 4 км/0.4 мм

1990

HDSL

Дуплексная передача на скорости 2 Мбит/с по 2 или 3 неэкранированным парам

2 UTP: 2.4 км/0,4 мм 2 UTP: 2.6 км/0,6 мм 3 UTP: 3.9 км/0,4 мм 3 UTP: 4.9 км/0,6 мм

1995

ADSL

1.5-8 Мбит/с (и более) нисходящий поток 640 - 1000 Кбит/с восходящий поток

1-5.4 км максимально

1997

VHDSL

20-50 Мбит/с

200-500 м

Концепция ADSL

Концепция ADSL была предложена в начале этого десятилетия компанией AT&T Bell Laboratories и Стэндфордским университетом. С тех пор был пройден путь от компьютерных эмуляций и лабораторных прототипов до выпуска стандартных систем, которые вскоре перерастут в интегрированные системы.

Принцип заключается в одновременной передаче по медной паре высокоскоростного нисходящего потока к пользователю и низкоскоростного восходящего потока от пользователя в сеть без влияния на телефонию.

В высокоскоростном нисходящем потоке и низкоскоростном восходящем потоке передается цифровая информация. В добавлении к этому, технология ADSL имеет важную возможность мультиплексирования цифровой информации на более высоких частотах, по сравнению с традиционным каналом ТЧ. Другими словами, пользователи, использующие аналоговую телефонию могут продолжать ей пользоваться одновременно с ADSL. Данная функция осуществляется с помощью специального устройства - сплиттера (ФНЧ).

Пропускная способность восходящего и нисходящего потоков составляет несколько Кбит/с и несколько Мбит/с соответственно. Естественно, по мере увеличения расстояния, максимально достижимая пропускная способность падает. Например, ADSL устройство, работающее на скорости 2 Мбит/с позволяет подключить множество пользователей на достаточно большом расстоянии. Тогда как ADSL устройства, работающие на скоростях 6 Мбит/с и более, позволят подключить пользователей на значительно меньшем расстоянии.

Поскольку восходящий поток передается на более низкой частоте, по сравнению с нисходящим, переходные помехи будут значительно ниже, чем при использовании симметричных систем. Отсутствие таких помех позволяет использовать ADSL устройства на больших расстояниях.

Приемопередатчик ADSL функционирует на более высоких частотах, чем стандартные телефонные устройства, поэтому при наличии фильтрации, обеспечивающей защиту от нежелательного шума (возникающего при передаче номера декадным током и при посылке вызывного тока), ADSL устройства могут использовать одну телефонную пару вместе с телефонными устройствами.

Таким образом, технология ADSL предполагает наличие пары высокоскоростных модемов для обеспечения доступа к широкополосным службам. Один модем устанавливается в ADSL - мультиплексоре и соединяется через высокоскоростную сеть с провайдером служб, предоставляющим доступ в Интернет, видео по запросу и т.п. Другой модем устанавливается в помещении пользователя и соединяется с одним или более модулем служб (Service Module -SM). SM - это устройство конечного пользователя, например персональный компьютер (ПК).

1.2 Области применения ADSL

Требования к скорости

Очевидно, что большинство абонентских служб являются асимметричными. Другими словами пользователь принимает большой объем информации, при этом скорость передачи информации значительно меньше. Особенно высокой скорости нисходящего потока требуют видео службы. Таким образом, ADSL устройство должно обеспечивать гибкость при выборе скорости, пользователь должен иметь возможность самостоятельно определять количество каналов и их скорость при приеме данных.

В последние годы, существенно возросло использование Интернет, также возрос объем информации, который пользователь принимает из сети. В связи с этим, современные ADSL модемы предоставляют пользователю два интерфейса. Первый интерфейс - Ethernet, с помощью него к модему может быть подсоединен любой персональный компьютер. Другой - АТМ интерфейс, позволяет, с помощью использования специального терминала принимать видео сигнал на телевизор, а также рассчитан на дальнейший рост АТМ технологии.

Службы и области применения ADSL

В данном параграфе приводится краткий обзор служб и областей примененияADSL.

Дистанционный доступ

Работа на дому - Конечный пользователь имеет возможность осуществлять доступ к рабочей станции, принтерам, факсам или удаленным ЛВС/ГВС

Нисходящий поток Видео качество CATV (4 Мбит/с) + голос + данные

Восходящий поток Голос + данные ([pic]64 Кбит/с)

Видео конференции Конечный пользователь имеет возможность принимать видеоизображение из удаленной видеоконференции, в этом случае видео будет передаваться по нисходящему потоку, а аудио информация в восходящем:

Нисходящий поток Низкокачественное видео (1.5 Мбит/с) + голос + графика

Восходящий поток Голос + графика + дата (все - 384 Кбит/с)

Другие области применения

Видео по запросу, Интерактивное телевидение

Конечный пользователь может получить доступ к видео реального времени, и/или заранее сохраненному видео или к графике, а также может осуществить поиск с помощью меню

Нисходящий потокКачество VHS (1.5 Мбит/с), CATV (4 Мбит/с), высокое (6 Мбит/с)

Восходящий поток Удаленное управление с помощью VCR (16 Кбит/с)

Музыка по запросу

Конечный пользователь может осуществить доступ к музыке через сеть провайдера служб

Нисходящий поток Высококачественное аудио (384 Кбит/с)

Восходящий поток Дистанционное управление (стоп, пауза,…) (100 бит/с)

Игры

Интерактивные игры Конечный пользователь имеет возможность участвовать в интерактивной игре через удаленный сервер с другим пользователем.

Нисходящий поток Высококачественное видео (6 Мбит/с) + аудио

Восходящий поток Джойстик или мышь ([pic]64 Кбит/с)

Заключение

Скорость приема и передачи данных, требуемая для реализации любого из рассмотренных приложений обеспечивается технологией ADSL.

1.3 Проблемы, связанные с применением ADSL

Параметры телекоммуникационной системы

На рисунке 6 показана различные параметры телекоммуникационной системы.Нам необходима максимальная скорость и, в то же время, минимальная вероятность возникновения ошибки. Этого можно достичь путем увеличения мощности передачи и/или увеличения полосы пропускания и/или усложнения системы. Конечно требуется минимально возможная мощность, полоса пропускания и сложность системы. Кроме того, телекоммуникационная система имеет ограничения по данным параметрам. Здесь оговариваются ограничения, налагаемые на мощность и ширину полосы пропускания.

С другой стороны, нам требуется обеспечить максимальное использование системы. Максимальное количество пользователей должны иметь возможность надежного доступа к службам с минимальной задержкой и максимальной защитой от интерференции. Вот то, что нужно пользователю.

Существуют определенные теоретические ограничения, влияющие на конечный продукт:

Теоретическая минимальная полоса пропускания по Найквисту

Теорема мощности Шеннона-Хартли и связанный с ней предел Шеннона

Ограничения, накладываемые правительством, например на выделяемый частотный диапазон

Технологические ограничения, например сложные компоненты

Различные явления, которые влияют на производительность передачи по витой паре могут быть разделены на следующие категории:

Затухание;

Дисперсия импульса;

Отражения;

Несогласованный приемопередатчик;

Изменения диаметра кабеля;

Шум и интерференция;

Белый шум;

Перекрестные помехи;

Интерференция на радио частоте;

Импульсный шум;

Критерий Найквиста

Найквист изучал проблему определения формы принимаемого импульса, которая позволила бы избежать межсимвольной интерференции (Inter-Symbol Interference - ISI) в детекторе. Им было показано, что для детектирования без ISI Rs символов в секунду, минимальная необходимая полоса пропускания составляет Ѕ Rs Гц. Данное правило выполняется при условии, что частотная характеристика коэффициента передачи имеет прямоугольную форму.

Wmin = 1/2Rs

При использовании среды передачи, имеющей форму частотной характеристики, отличную от прямоугольной равенство примет следующий вид:

Wmin = Ѕ(1+r)Rs где r - число от 0 (прямоугольная форма) до 1.

Вывод Критерий Найквиста вводит ограничения на скорость передачи в символах в секунду для данной полосы пропускания. Например в телефонии используется полоса пропускания 3 КГц. В этом случае максимально достижимая скорость составит 6000 символов в секунду (или Бод).

Теорема Шеннона - Хартли

В данной теореме определено, что достичь максимальной скорости (бит/сек) можно путем увеличения полосы пропускания и мощности сигнала и, в то же время, уменьшения шума.

Для того, чтобы послать дополнительные биты в канал необходимо удвоить отношение сигнал/шум (SNR). Этого можно достич удвоив мощность полезного сигнала, или уменьшив шум.

Для коротких расстояний запас по пропускной способности по пределу Шеннона возрастает.

Вывод Теорема Шеннона-Хартли ограничивает информационную скорость (бит/с) для заданной полосы пропускания и отношения сигнал/шум. Для увеличения скорости необходимо увеличить уровень полезного сигнала, по отношению к уровню шума.

Проблемы с модемами Мы имеем канал с известной полосой пропускания и отношением сигнал/шум. С одной стороны критерий Найквиста ограничивает максимальное число символов, которые возможно передать без ошибки. С другой стороны теорема Шеннона - Хартли ограничивает максимальное число бит, которые возможно передать без ошибки. Исходя из данных двух ограничений мы можем вычислить количество бит на символ, которое необходимо обеспечить для достижения максимальной (не обязательно оптимальной) скорости. Однако остается неясно, как реализовать необходимое количество бит в символе, т.е. возможны различные технологии модуляции.

Затухание

Импульс, передаваемый по витой паре принимается на другой стороне с меньшей амплитудой.

Затухание в кабеле ограничивает расстояние, на котором можно использовать витую пару без регенераторов. На частотные характеристики витой пары существенное влияние оказывает поверхностный эффект, в результате которого токи высокой частоты текут в поверхностном слое проводника. В результате получается более сильное затухание на высоких частотах.

Проблема может быть решена путем увеличения мощности передаваемого сигнала:

Максимальная мощность сигнала ограничена в следствии возникновения эффекта переходных помех, таким образом принимаемый сигнал всегда имеет маленькую амплитуду.

Необходимо отметить, что для обеспечения электромагнитной совместимости, необходимо, чтобы системы ADSL не мешали функционированию радио передающих систем. Данное условие также накладывает ограничения на мощность передаваемого сигнала.

ADSL устройство должно работать как на короткой линии с затуханием 0 дБ, так и на длинной линии с затуханием в 55 дБ, поскольку неизвестно, на какой линии данное устройство будет установлено.

Дисперсия импульса

Данная проблема заключается в следующем: форма импульса, приходящего, на удаленный конец отличается от исходной формы.

Данный эффект (вследствие частотной зависимости функции передачи по каналу) приводит к тому, что называется межсимвольной интерференцией (ISI). В линейных каналах, имеющих частотные ограничения и зависимые от частоты затухание и задержку, возникает дисперсия импульсов, которая приводит к ошибкам в процессе детектирования. Этот эффект сильнее всего сказывается на коротких импульсах, что приводит к ограничениям для высокоскоростных систем. ISI может быть частично компенсирована с помощью адаптивных канальных компенсаторов. Необходимо впрочем, отметить, что компенсация представляет из себя усиление и, таким образом имеет пределы, связанные с качеством принимаемого сигнала (шум, …).

Отражения

Отражения в кабеле могут возникнуть вследствие рассогласования приемопередатчика и изменения диаметра кабеля.

Шум и интерференция

Здесь оговариваются наиболее важные источники шума и интерференции, которые оказывают влияние на медную витую пару.

Белый шум

Белый шум имеет много причин появления и полностью подавить его практически невозможно. Это означает, что даже если изолировать все источники шума и интерференции все равно белый шум будет ограничивать производительность системы.

Переходные помехи

Переходные помехи вносят наиболее серьезные ограничения в абонентский участок сети. Суть данного явления заключается в емкостной связи между парами кабеля. Переходные помехи могут быть на ближнем конце (Near End CROSSTalk - NEXT) и на дальнем конце (Far End CROSSTalk - FEXT)

NEXT определяются, как переходные помехи между принимающей и передающей парой на одном конце кабеля.

FEXT определяются как переходные помехи в приемнике вследствие влияния передатчика, работающего по другой паре кабеля на удаленном от приемника конце.

Необходимо отметить, что влияющая помеха при FEXT, в отличии от NEXT, проходя по линии связи, затухает также, как и передаваемый сигнал. Таким образом, в случае, если сигналы передаются в обоих направлениях, по одному кабелю NEXT будет значительно больше FEXT. Если сигналы используют общую полосу частот, например, в случае использования эхо компенсации, NEXT будет вносить наибольший вклад в переходные помехи. Также NEXT будет выше при использовании близко расположенных модемов. Это означает, что NEXT более важен в месте расположения ADSL -мультиплексора.

Собственные переходные помехи

Помимо переходных помех, описанных ранее, существуют и так называемые собственные переходные помехи. В действительности данный тип помехи не является переходным, поскольку не является помехой между приемником и передатчиком. Данный тип помехи вызван не полным разделением направлений приема и передачи в дифсистеме, а также является следствием не идеального согласования приемника и передатчика. Затухание на линии может достигать 55 дБ, поэтому для того, чтобы принять сигнал с уровнем, более высоким, чем у собственной переходной помехи, дифсистема должна обеспечивать затухание не хуже, чем 55 дБ.

Как и в случае NEXT, данная проблема существует, только при передаче и приеме сигналов в одном частотном диапазоне, например при использовании эхо компенсации.

Радиочастотная интерференция

Сеть доступа подвергается действию широкого спектра радиочастотной интерференции (Radio Frequency Interference - RFI), например от длинноволновых или средневолновых широковещательных передатчиков. Несмотря на то, что медная витая пара, как правило, хорошо симметрирована и поэтому мало подвержена данному явлению (Обычно RFI более подвержены сельские сети с воздушными кабелями), должны быть предусмотрены средства, защищающие системы передачи от RFI. Необходимо отметить, что исходя из требований по электромагнитной совместимости (Electro-Magnetic Compatibility - EMC) системы передачи (ADSL) не должны быть подвержены интерференции с радиопередающим оборудованием. Данный факт также накладывает ограничения на мощность, передаваемого по линии сигнала.

Важное преимущество одного из методов модуляции, используемых в ADSL - DMT заключается в том, что он удовлетворяет как требованиям по устойчивости к радиочастотной интерференции, так и создаваемым магнитным полям.

Импульсный шум

Данное явление характеризуется редкими шумовыми выбросами большой амплитуды, причиной которых может быть коммутационные станции, импульсный набор, вызывной сигнал, близость железнодорожных станций, заводов и т.п. Характеристики импульсного шума зависят от типа используемой станции, и таким образом специфичны для каждой страны. Поскольку выбросы имеют острую форму, спектр импульсного шума ровный в диапазоне ADSL сигналов (максимальная частота ADSL сигнала составляет 1 МГц).

1.4 Решения ADSL проблем

Разделение передаваемых и принимаемых данных

При использовании ADSL данные передаются по общей витой паре в дуплексной форме. Для того, чтобы разделить передаваемый и принимаемый поток данных существуют два метода: частотное разделение каналов (Frequency Division Multiplexing - FDM) и эхо компенсация (Echo Cancelation - EC).

Частотное разделение каналов

При использовании данного механизма низкоскоростной канал передаваемых данных располагается сразу после полосы частот, используемой для передачи аналоговой телефонии. Высокоскоростной канал принимаемых данных располагается на более высоких частотах. Полоса частот зависит от числа бит передаваемых одним сигналом.

Эхо компенсация

Данный механизм позволяет низкоскоростному каналу передаваемых данных и высокоскоростному каналу принимаемых данных располагаться в общем частотном диапазоне, что позволяет более эффективно использовать низкие частоты, на которых затухание в кабеле меньше.

Сравнение

Эхо компенсация позволяет улучшить производительность на 2 дБ, однако является более сложной в реализации. Преимущества EC растут при использовании более высокоскоростных технологий, таких как ISDN или видеотелефония на скорости 384 кбит/с. В этих случаях FDM требует выделения под высокоскоростной канал принимаемых данных более высоких частот, что приводит к увеличению затухания и сокращению максимального расстояния передачи. Совмещение двух каналов в одном частотном диапазоне, при использовании ЕС приводит к появлению эффекта собственного NEXT, который отсутствует при использовании FDM. Стандарт ADSL предусматривает взаимодействие между различным оборудованием, использующим как механизм FDM, так и EC, выбор конкретного механизма определяется при установлении соединения.

Заключение

При отсутствии интерференции с другими службами, приемопередатчик, использующий ЕС функционирует лучше. На скорости в 1,5 Мбит/с, разница в максимальном расстоянии составляет 16% в пользу ЕС, однако на скорости 6Мбит/с разница падает до 9%.

При учете собственной переходной помехи (т.е. в случае использования данного кабеля другими системами ADSL) приемопередатчик, использующий FDM функционирует лучше на скоростях выше 4,5 Мбит/с. Это связано с тем, что приемопередатчик с FDM ограничен лишь наличием эффекта FEXT, тогда как приемопередатчик, использующий механизм EC подвержен влиянию как FEXT, так и собственного NEXT. Обычно модемы располагаются близко друг от друга на входе ADSL -мультиплексора, в этом случае наибольшее значение имеет параметр NEXT, именно поэтому предпочтение отдается механизму FDM.

Методы передачи

Введение

Одним из наиболее важных вопросов при стандартизации систем передачи является вопрос выбора типа используемой модуляции. В процессе стандартизации ADSL, ANSI определил три потенциальных типа модуляции: Квадратурная амплитудная модуляция (Quadrature Amplitude Modulation - QAM) . Амплитудно-фазовая модуляция с подавлением несущей (Cariereless Amplitude/Phase Modulation - CAP) . Дискретная многотональная модуляция (Discrete MultiTone Modulation - DMT)

Исследования показали, что наиболее производительной является DMT. В марте 1993 года рабочая группа ANSI T1E1.4 определила базовый интерфейс, основанный на методе DMT. Позднее ETSI также согласился стандартизовать DMT для применения в ADSL.

Квадратурная амплитудная модуляция

Для передачи в одной полосе частот, обычным методом является амплитудная модуляции (Pulse Amplitude Modulation - PAM), которая заключается в изменении амплитуды дискретными шагами. QAM использует модуляцию двух параметров - амплитуды и фазы. В данном случае для кодирования трех старших бит используется относительная фазовая модуляция, а последний бит кодируется выбором одного из двух значений амплитуды для каждого фазового сигнала.

Теоретически количество бит на символ можно увеличивать, путем повышения разрядности КAM.

Однако при увеличении разрядности становится все сложнее и сложнее детектировать фазу и уровень. В таблице 1.3 представлены требования к SNR (отношение сигнал/шум) для КAM различной разрядности, с коэффициентом ошибок по битам BER( 10-7).

Таблица 1.3 Требования к SNR

Количество бит на символ

Разрядность QAM (2r -

Требуемое SNR (дБ) для

(r)

QAM)

BER( 10-7)

4

16- QAM)

21,8

6

64- QAM)

27,8

8

256- QAM)

33,8

9

512- QAM)

36,8

10

1024- QAM)

39,9

12

4096- QAM)

45,9

14

16384- QAM)

51,9

Амплитудно-фазовая модуляция с подавлением несущей

САР также как и КAM использует модуляцию двух параметров. Форма спектра у данного метода модуляции также сходна с КAM.

Дискретная многотональная модуляция (DMT)

DMT использует модуляцию со многими несущими. Время разбивается на стандартные «периоды символа» (symbol period), в каждый из которых передается один DMT - символ, переносящий фиксированное количество бит. Биты объединяются в группы и присваиваются сигнальным несущим различной частоты. Следовательно, с частотной точки зрения, DMT разбивает канал на большое число подканалов. Пропускная способность зависит от полосы частот, то есть подканалы с большей пропускной способностью переносят больше бит. Биты для каждого подканала преобразуются в сложное число, от значения которого зависит амплитуда и фаза соответствующего сигнальной несущей частоты. Таким образом, DMT можно представить как набор КAM систем, которые функционируют параллельно, каждая на частоте несущей соответствующей частоте подканала DMT (смотри рисунок 15). Итак, DMT передатчик по существу осуществляет модуляцию путем формирования пакетов сигнальных несущих для соответствующего количества частотных подканалов, объединения их вместе и затем посылки их в линию как «символа DMT».

Модуляция/демодуляция с использованием многих несущих реализуется в полностью цифровой схеме с помощью развития методов быстрого преобразования Фурье БПФ(Fast Fourier Transform - FFT). Ранние реализации DMT функционировали плохо в следствии сложности обеспечения равных промежутков между подканалами. Современные реализации функционируют успешно благодаря наличию интегральных микросхем, реализующих БПФ- преобразование аппаратно, что позволяет эффективно синтезировать сумму КAM- модулированных несущих.

Для достижения оптимальной эффективности главной задачей является выбор количества подканалов (N). Для абонентских телефонных линий оптимальным является значение N=256, которое позволяет не только достигнуть оптимальной производительности, но и сохранить достаточную простоту реализации системы.

При поступлении данных они сохраняются в буфере. Пусть данные поступают со скоростью R бит/с. Они должные быть разделены на группы бит, которые будут затем присвоены DMT символу. Скорость передачи DMT символа обратно пропорциональна его длительности Т, таким образом число бит присваиваемых символу будет b=R.T. (т.е. символьная скорость будет 1/Т). Из этих b бит, bi бит (i=1, …, N=256) предназначены для использования в I подканале, таким образом:

Для каждого из N подканалов, соответствующие ему bi биты, транслируются кодером DMT в сложный символ Xi, с соответствующей амплитудой и фазой. Каждый символ Xi, может быть рассмотрен как векторное представление процесса модуляции КAM на частоте несущей fi. Для данного вектора существует 2bi возможных значений. Фактически каждые bi бит представляют точку на сигнальной решетке КAM, присвоенную определенному каналу i в DMT символе. В результате получается N КAM векторов. Данные N векторов подаются на вход блок инверсного быстрого преобразования Фурье (Inverse Fast Fourier Transform - IFFT). Каждый символ Xi представлен на определенной частоте, с амплитудой и фазой соответствующими КAM модуляции. В результате N КAM векторов представляют из себя набор из N=256 равноудаленных друг от друга частот с заданными частотой и фазой. Данный набор преобразуется IFFT во временную последовательность. N выходов IFFT затем подаются на конвертер, преобразующий сигнал из параллельного в последовательный. Далее осуществляется цифроаналоговое преобразование, с помощью ЦАП (DAC). Перед отправкой непосредственно в линию DMT- символ пропускается через аналоговый полосовой фильтр, который необходим для разделения по частоте направлений передачи от пользователя и к пользователю как видно, с точки зрения направления передачи система является системой с частотным разделением каналов (ЧРК). Для приемника осуществляются обратные действия.

Существенной проблемой является ISI. Межсимвольная интерференция проявляется в том, что заключительная часть предыдущего DMT-символа искажает начало следующего символа, чья заключительная часть, в свою очередь искажает начало следующего за ним символа и т.д. Другим словами подканалы не являются полностью независимыми друг от друга с точки зрения частоты. Наличие эффекта ISI приводит к появлению интерференции между несущими (Inter-Carrier Interference - ICI). Для того, чтобы решить данную проблему существует три способа:

. Ввести дополнительный интервал перед каждым символом. В данном случае передача по линии будет иметь всплески, причем длина такого всплеска будет равна длине DMT символа. Однако в этом случае всплески, займут лишь около 30% всего времени, что критически снизит эффективность ADSL системы. Ввести корректор времени (Time Domain Equalizer - TEQ) для компенсации функции передачи по каналу. Однако это решение окажет существенное влияние на сложность аппаратной реализации, а также реализацию алгоритмов, необходимых для вычисления оптимального набора коэффициентов. Ввести «циклический префикс» (cyclic prefix), который прибавляется к каждому модулированному сигналу. Конечно число символов в таком префиксе должно быть значительно меньше N. Корректор осуществляет поиск на наличие данного префикса и, при наличии ISI предполагается, что интерференция распространится не далее данного префикса. Поскольку циклический префикс удаляется в приемнике, возможная ISI также удаляется до начала процесса демодуляции с помощью БПФ (смотри также рисунок 24). Данный метод снижает сложность аппаратной реализации, и вместе с тем позволяет достигнуть высокой эффективности. Например 5% избыточность привносимая префиксом, является небольшой.

Использование узких подканалов имеет преимущество, которое заключается в том, что характеристики кабеля линейны для данного подканала. Поэтому дисперсия импульса в пределах каждого подканала, а следовательно и необходимость в коррекции в приемнике будет минимальна. В следствии наличия импульсного шума принятый символ будет искажен, однако БПФ «раскидает» данный эффект по большому числу подканалов, в результате чего вероятность ошибки будет невелика.

При использовании DMT количество бит данных, передаваемых по каждому подканалу может варьироваться в зависимости от уровня сигнала и шума в данном подканале. Это не только позволяет максимизировать производительность для каждой конкретной абонентской линии, но также позволяет уменьшить влияние таких эффектов как переходные помехи или RFI. Количество бит данных, передаваемых по каждому подканалу, определяется на фазе инициализации. В общем случае использование более высоких частот вызывает более сильное затухание, что приводит к необходимости использования КAM более низкой разрядности. С другой стороны, затухание на низких частотах будет ниже, что позволяет использовать КAM более высокой разрядности. В дополнении к этому, распределение количества бит по подканалам может адаптироваться на фазе передачи данных, в зависимости от качества канала.

II. Технологические характеристики оборудования ADSL компании “Алкатель”

2.1 Общее описание оборудования ADSL

Введение в технологию

Продукт ADSL (Asymmetric Digital Subscriber Line) предназначен для того, чтобы иметь возможность предлагать пользователям частного сектора и сектора малого бизнеса, находящимся на ограниченном расстоянии от CO (Central Office - здание (АТС)), услуги по передаче данных на повышенных скоростях. Для предоставления таких услуг используются существующие медные витые пары (по одной на каждого пользователя), при этом никакие дополнительные активные повторители не требуются. Применение технологии FDM (Frequency Division Multiplexing - частотное уплотнение каналов) позволяет по тем же витым парам одновременно предоставлять услуги POTS (Plain Old Telephone Service - услуги обычной телефонии), поэтому можно говорить о следующих преимуществах:

оператор сети использует существующую кабельную инфраструктуру;

у абонента сохраняются существующие услуги телефонии вместе с существующей аппаратурой.

В ADSL-системе предусмотрены асимметричные скорости передачи битов: высокая (вплоть до 8 Мбит/с) в направлении от CO к абоненту (называемая скоростью в прямом канале) и низкая (вплоть до 1 Мбит/с) в противоположном направлении (называемая скоростью в обратном канале). Эта асимметрия дает возможность предоставлять абоненту услуги, для которых требуется широкая полоса частот, в том числе услуги мультимедиа (цифровые видео- и аудио- услуги) и соединение по протоколу Ethernet. В дальнейшем, по мере увеличения скорости в обратном канале, станет возможным предоставление, на меньших скоростях, услуг мультимедиа двустороннего характера.

Продукт ADSL полностью основан на технологии ATM (Asynchronous Transfer Mode - режим асинхронной передачи). Это означает, что как данные пользователя (мультимедиа, соединение по протоколу Ethernet и управляющая информация), так и управляющие данные системы OAM (Operation, Administration and Maintenance - эксплуатация, администрирование и техобслуживание) транспортируются с применением ATM-ячеек. Основной причиной такого подхода является обеспечение гибкости продукта на перспективу. Применение ATM в качестве транспортного режима в большинстве случаев позволяет операторам сетей и провайдерам услуг совершенствовать предоставляемые услуги без изменения сетевого оборудования.

Система ADSL состоит из двух частей, первая из которых (на стороне CO) называется ASAM, (ATM Subscriber Access Multiplexer - ATM-мультиплексор абонентского доступа),а вторая (на стороне абонента) - (CPE Customer Premises Equipment - оборудование в помещении заказчика). CPE, в свою очередь, включает в себя PS (POTS Splitter - разветвитель) и ANT (ADSL Network Termination (unit) - (блок) сетевого ADSL-окончания). По транспортной ATM-линии мультиплексор ASAM соединен с ATM-коммутатором. Выбранным транспортным механизмом является либо SDH(Synchronous Digital Hierarchy - синхронная цифровая иерархия) [STM1 или SONET (OC3c)] либо PDH (Plesiochronous Digital Hierarchy - плезиохронная цифровая иерархия) [Е1]. Блок ANT может быть подключен к TE(Terminal Equipment - терминальное оборудование) (STB (Set Top Box - телеприставка ) или иному мультимедийному терминалу) и к локальной сети (LAN), использующей протокол Ethernet.

Система ADSL может работать как с CO, так и с выносными блоками. Выносное ASAM-оборудование может быть либо непосредственно подключено к опорной ATM-сети, либо каскадировано от находящегося на CO мультиплексора ASAM через интерфейс Е1.

Описание сети

Общие сведения

Основной задачей, стоящей перед системой доступа Alcatel 1000 ADSL, является обеспечение быстрого доступа к сети Интернет и корпоративным сетям LAN. Эта задача решается с помощью комбинированной инфраструктуры, в состав которой входят по меньшей мере четыре функциональные группы:

малая LAN в помещении абонента;

инфраструктура связи оператора сети, которая содержит сеть доступа, мультиплексоры, BB (Broad Band - широкополосный -коммутаторы) и высокоскоростную опорную сеть;

LAN у ISP (Internet Service Provider - провайдер услуг сети Интернет) в случае, когда доступ к сети Интернет осуществляется именно таким способом;

LAN предприятия в случае, когда обеспечен доступ к корпоративной сети.

Сетевая архитектура

Для обеспечения внутри сетевой архитектуры, показанной на рис. 23, сквозных соединений применяются различные технологии:

стандартная технология LAN между персональным компьютером и ANT (Ethernet II или IEEE 802.3);

технологии ATM и ADSL между ANT или PC-NIC (Network Interface Card - плата сетевого интерфейса) и ADSL-оборудованием на стороне CO;

стандартное транспортное оборудование между ASAM и опорной сетью WAN (территориальная сеть) с использованием SDH/SONET или PDH;

BB-коммутаторы/кросс-соединители в ядре опорной сети WAN.

обладающее высокой производительностью и в то же время стандартное LAN- оборудование в инфраструктуре ISP и корпоративной LAN.

Сеть в абонентских помещениях

Сеть в абонентских помещениях может представлять собой либо отдельный персональный компьютер, либо небольшую LAN, содержащую до 16 оконечных систем. Взаимные соединения между ANT и оконечными системами осуществляются с помощью LAN-оборудования, отвечающего требованиям интерфейса Ethernet II или IEEE 802.3.

Поскольку блок ANT оснащен и интерфейсом ATMF на 25,6 Мбит/с, то можно также подключать оборудование класса ATM (STB и т.п.), при этом оба интерфейса, то есть Ethernet и ATMF, могут быть задействованы одновременно.

WAN и опорная сеть

Через мультиплексоры ASAM опорная сеть и WAN соединяют абонентов с провайдерами ISP и корпоративными LAN.

К основным функциям этих объектов относятся:

транспортирование информации в пределах WAN;

перекрестное соединение информационных потоков между отдельными пользователями и провайдерами ISP и корпоративными LAN.

Провайдеры ISP и корпоративные LAN

Принципиальных различий между локальной сетью LAN провайдера ISP и локальной сетью LAN крупной корпорации практически не существует.

В общем и целом структура LAN, подключенной к сети связи общего пользования, включает в себя:

коммуникационные серверы доступа (иногда называемые VC-мостами (Virtual Connection - виртуальное соединение));

опорные IP-маршрутизаторы;

высокоскоростные сети LAN, например, с волоконно-оптическими соединениями (ATM-интерфейс FDDI (Fiber Distributed Digital Interface - цифровой интерфейс волоконно-оптической передачи));

информационные серверы;

коммуникационные серверы WAN-магистралей.

Важным аспектом этого оборудования является то, что оно должно оканчиваться наборами протоколов, в точности повторяющими имеющиеся в абонентских помещениях.

Подсистема ADSL-доступа

Общие сведения

Подсистема ADSL-доступа предназначена для реализации современного способа сигнальной обработки или модуляции, необходимого для обеспечения соединения по абонентской витой паре с модемной транспортной технологии (ADSL-модемов). В основу этой модемной технологии положена DMT-модуляция Discrete Multi-Tone - дискретная многотоновая (модуляция), которая интегрирована в ASAM на стороне CO и в ANT или PC-NIC на абонентской стороне.

Модемные интерфейсы мультиплексоров ASAM оснащены так называемыми PS, которые представляют собой устройства уплотнения и разуплотнения частотных доменов для сигналов ADSL и POTS. Частично внешнее устройство PS используется также как часть находящейся в абонентском помещении аппаратуры.

Управление элементами сети доступа осуществляется через (удаленный) объект централизованного управления, который называется AWS (ASAM WorkStation - рабочая станция), и в котором используется протокол SNMP (Simple Network Management Protocol - простой протокол управления сетью). Обмен информацией между AWS и элементами сети доступа осуществляется по выделенным соединениям, предназначенным для администрирования.

Подсистема ADSL-доступа может работать как с CO, так и с выносными блоками. Выносное ASAM-оборудование может быть либо непосредственно подключено к опорной ATM-сети, либо каскадировано от находящегося на CO мультиплексора ASAM через PDH-интерфейс (DS3/Е3).

Системная архитектура

Основными строительными блоками глобальной ADSL-архитектуры являются:

ASAM для ADSL на стороне CO;

блок ACU (блок контроля аварий) (AACU-[ADSL-ситуаций]);

расширитель ADSE-A (ADSL Serial Extender - последовательный ADSL- расширитель);

ANT или PC-NIC и PS на абонентской стороне;

выносной мультиплексор R-ASAM(удаленный,выносной), находящийся в глубине сети;

менеджер сетевых элементов AWS.

ASAM

С помощью ряда интерфейсов (SDH STM1 или SONET OC3с) мультиплексор ASAM размещен на стороне CO и соединен со станцией, в которой реализована технология BB-ISDN ATM.

Внутри каждый интерфейсный модуль SDH/SONET соединен, с помощью обеспечивающей двустороннюю передачу среды, с рядом ассоциированных модулей ADSL-LT (Line Termination - линейное окончание), при этом шина IQ Quality of Service Interface - интерфейс качества обслуживания обеспечивает управляющий интерфейс для данных, передаваемых по прямому и обратному каналам. Для стыковки с выносным мультиплексным оборудованием (типа R-ASAM) можно также предусмотреть линейные окончания PDH-LT (DS3/E3) или SDH-LT (STM1 или OC3c).

Модемные интерфейсы мультиплексора ASAM также оснащены так называемыми PS, которые представляют собой устройства уплотнения и разуплотнения частотных доменов для сигналов ADSL и POTS.

Блок AACU обеспечивает визуальное отображение аварийных ситуаций и стыковку с соответствующей системой, находящейся в здании АТС.

ACU

На каждый статив приходится один блок ACU (до 4 блоков ACU в полностью укомплектованном мультиплексоре ASAM).

Расширитель

Расширитель позволяет подключать к расширительной линии дополнительные подстативы и, в целях защиты оборудования, дублируется.

Транспортная система

Ключевой частью подсистемы ADSL-доступа является "ADSL-модем". Для осуществления соединений мультимедийного характера на базе ATM и по протоколу Ethernet используется витая пара между абонентским оборудованием (ANT) и оборудованием, находящимся в CO (ASAM).

Стержнем ADSL-системы являются два ADSL-модема, один из которых находится на стороне CO, а другой - в абонентском помещении. В сочетании эти подсистемы обеспечивают расширение полосы пропускания витой пары, которая является соединяющей из средой.

ANT

Аппаратура ANT размещается в абонентских помещениях. Она обеспечивает стыковку малой абонентской LAN, отдельного персонального компьютера и/или STB (для мультимедийных целей) с находящимися на другой стороне LAN и/или ATM-оборудованием. Все услуги по части стыковки оказываются с помощью ADSL-сигнала.

PC-NIC

PC-NIC представляет собой вставную плату стандарта PCI (интерфейс периферийного устройства), которая находится в абонентском помещении. По своим функциям она не отличается от ANT, однако позволяет избавиться от необходимости иметь дополнительную плату интерфейса Ethernet или ATMF.

R-ASAM

Выносной мультиплексор ASAM выполняет существенно те же функции, что и обычный, однако удовлетворяет более жестким требованиям в части конструктивного оформления, питания и климатических условий эксплуатации. R- ASAM может быть либо автономным, либо каскадированным от ASAM, находящегося в CO. R-ASAM можно разместить либо в уличном корпусе, либо в CEV (Controlled Environment Vault - камера с контролируемыми климатическими параметрами)


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.