Принцип работы туннельных диодов

Общая характеристика туннельного и обращенного диодов. Сущность теории туннельного эффекта в полупроводниках. Основные преимущества туннельного диода перед обычными полупроводниковыми диодами и триодами. Принцип работы туннельных диодов, их схемы.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид контрольная работа
Язык русский
Дата добавления 17.10.2011
Размер файла 210,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

туннельный обращенный диод схема

Введение

Туннельный диод

Обращенный диод

Методы изготовления туннельных диодов

Зависимость параметров от температуры

Некоторые схемы на туннельных диодах

Практическая часть. Исследование ВАХ на туннельном диоде

Заключение

Список литературы

Введение

Цель моей курсовой работы ознакомится с основными вопросами, возникшими с появлением туннельного диода. Этот круг вопросов в первую очередь охватывает:

1. Физические основы работы туннельного диода.

2. Использование туннельного диода как системы, позволяющей вести исследования физических процессов и свойств сильнолегированных полупроводников.

3. Исследование туннельного диода как радиотехнической системы, на основе которой могут быть реализованы многочисленные радиотехнические устройства.

4. Разработку принципов проектирования туннельных диодов с оптимальными параметрами.

У нас в стране, а также и за рубежом было опубликовано немало работ, посвященных экспериментальному и теоретическому исследованию физики туннельных диодов, вопросам их многочисленных применений. Вместе с тем многие факторы, определяющие основные характеристики туннельных диодов, долгое время оставались неясными, и трудно было указать путь получения приборов с заданными параметрами, которые соответствовали бы разнообразным требованиям, предъявляемым в связи с многочисленными радиотехническими применениями. Поэтому были проведены исследования для выяснения физических основ работы туннельных диодов, причем в первую очередь предполагалось установить количественные соотношения между основными характеристиками туннельных диодов и электрофизическими свойствами полупроводника.

Комплексный характер исследований позволил изучить вольтамперную характеристику туннельного диода, по-видимому, с наиболее полным учетом физических свойств сильнолегированного полупроводника и туннельного p-n- перехода.

Основной задачей моей работы является изучение схемы с туннельным диодом, на которой исследуются его вольтамперные характеристики.

Туннельный диод

Свое название туннельный диод получил из-за лежащего в его основе работы известного в квантовой механике туннельного эффекта. Еще до открытия Эсаки этот эффект в полупроводниках был достаточно изучен, первоначально Зенером, затем Мак?Аффи, Шокли и другими, которые рассмотрели туннелирование электронов через запрещенную зону в сплошном полупроводнике. Дальнейшее развитие теория туннельного эффекта в полупроводниках получила в фундаментальных работах Л.В. Келдыша.

Рис. 1

Основа этого явления заключается в том, что частица (например, электрон 2 на рис. 1), имея энергию Eэл, которая меньше высоты потенциального барьера Eб обладает конечной вероятностью проникновения сквозь этот барьер. Потенциальный барьер Eб (например, связанный с работой выхода электрона из металла) по законам классической физики не составляет препятствия для электрона 1, обладающего большей энергией, чем высота этого барьера. При определенных условиях и электрон 2 может преодолеть его, хотя энергия электрона меньше высоты потенциального барьера. Причем этот электрон не огибает барьера, а как бы «туннелирует» сквозь него (отсюда и название эффекта), имея одну и ту же энергию до и после перехода.

Такой механизм преодоления потенциального барьера можно связать с волновым представлением движения электрона в твердом теле, когда при столкновении с барьером электрон подобно волне проникает на какую-то глубину внутрь его. В случае барьера конечной толщины имеется какая-то конечная вероятность найти волну (электрон) с другой стороны барьера, что эквивалентно прохождению электроном барьера. Чем меньше ширина барьера, тем больше «прозрачность» его для волны; т. е. тем больше вероятность прохождения электрона сквозь этот потенциальный барьер. При определенных условиях туннельный эффект может наблюдаться в p-n-переходе. Чтобы найти условия, при которых возможен туннельный эффект, необходимо выяснить влияние параметров перехода на вероятность туннельного эффекта.

Ширина сплавного p-n-перехода связана с концентрацией примесей в полупроводнике следующим образом:

где е -- диэлектрическая проницаемость материала;

e -- заряд электрона.

При обычном легировании полупроводниковых материалов (концентрация примесей донорных или акцепторных порядка 1016 см?3) обедненный слой получается довольно широким (около 10?4 см). При такой ширине перехода вероятность туннелирования электронов через него пренебрежимо мала.

Вероятность Wэл туннельного прохождения электрона через p-n-переход для треугольного потенциального барьера определяется следующим выражением

где Eg ? ширина запрещенной зоны (здесь принято Eg ? e·Ukчто справедливо для вырожденных полупроводников).

Для определения плотности туннельного тока необходимо найти вероятное количество электронов, проходящих через потенциальный барьер в 1 сек. Оно будет равно произведению вероятности туннелирования электрона Wэл на число столкновений электрона с барьером за 1 сек, равному a·Eg/ћ·д (а-- постоянная решетки кристалла), т. е.

С ростом степени легирования материала ширина p-n-перехода уменьшается и вероятность туннелирования возрастает. При концентрации примесей 1019--1020 см?3, соответствующих вырождению, ширина перехода получается порядка 100 А° и вероятное количество туннельных переходов электрона за 1 сек будет уже порядка 1012 (для германия). При этом напряженность электрического поля в p-n-переходе около 106 В/см и переброс электронов за счет эффекта Зенера еще не сказывается.

Таким образом, туннельный эффект становится практически ощутимым лишь в сильнолегированных материалах. Изучая узкие сильнолегированные сплавные переходы в германии, Эсаки и открыл новый тип полупроводникового прибора -- туннельный диод, вольтамперная характеристика которого изображена на рис. 2, а в сравнении с вольтамперной характеристикой обычного диода, изображенной штриховой линией.

Образовавшееся вследствие вырождения полупроводникового материала перекрытие зон является необходимым условием для возможного туннелирования электронов через потенциальный барьер узкого p-n-перехода. Положение уровня Ферми затенено снизу для выделения того уровня энергии электронов в разных материалах, который находится в одинаковых энергетических условиях при термодинамическом равновесии тел. Вероятность заполнения этого уровня, как известно, равна половине. Такому выделению уровня Ферми способствует и слабая зависимость его положения в примесных полупроводниках от изменения температуры в пределах, встречающихся на практике. Подобное выделение этого уровня облегчает рассмотрение вопросов, связанных с распределением электронов по энергетическим уровням в зонах.

Такой подход и применен (рис. 2, б--ж) для объяснения формы вольтамперной характеристики туннельного диода.

При отсутствии внешнего смещения на p-n-переходе уровень Ферми имеет одинаковое энергетическое положение в p- и n-областях (см. рис. 2. б). Распределение электронов выше и ниже уровня Ферми в обеих областях перекрывающихся частей зон будет аналогичное, что определяет одинаковые вероятности для туннелирования электронов слева направо и справа налево. Результирующий ток через переход в этом случае равен нулю, что соответствует точке в на вольтамперной характеристике (см. рис. 2, а)

При подаче на переход прямого смещения (плюс источника питания на p-область и минус -- на n-область), уменьшающего перекрытие зон. Энергетические распределения электронов смещаются друг относительно друга совместно с уровнями Ферми (см рис. 2. в). Это приводит к преобладанию электронов в n-области над электронами одной и той же энергии в p-области и количества свободных уровней в p-области над незанятыми уровнями в n-области на одинаковых уровнях в месте перекрытия зон. Вследствие этого поток электронов из n-области в p-область будет преобладать над обратным потоком и во внешней цепи появится ток, что соответствует точке в на характеристике (см. рис. 2, а). По мере роста внешнего смещения результирующий ток через переход будет увеличиваться до тех пор, пока не начнет сказываться уменьшение перекрытия зон, как это показано на рис. 2, г. Это будет соответствовать максимуму туннельного тока. При дальнейшем увеличении напряжения в результате уменьшения величины перекрытия зон туннельный ток начнет спадать и наконец спадает до нуля (штрих-пунктир на рис. 2, а) в момент, когда границы дна зоны проводимости и потолка валентной зоны совпадут (см. рис. 2, д).

Из рассмотрения действительной вольтамперной характеристики туннельного диода видно, что ток в точке д не равен нулю. Это можно понять, если учесть, что при положительном смещении будет иметь место инжекция электронов из электронной области в дырочную и инжекция дырок из дырочной области в электронную, т. е. появится диффузионная компонента тока, как в обычном p-n-переходе. При этом носители проходят над потенциальным барьером, величина которого уменьшена приложенным внешним положительным смещением (за счет своей тепловой энергии), в то время как при туннельном эффекте они проходят сквозь него.

Но расчеты показывают, что ток в точке д вольтамперной характеристики значительно больше диффузионного тока. который должен быть при этом напряжении смещения. Превышение действительного тока над диффузионным, обусловленным инжекцией, получило название избыточного тока. Природа его еще до конца не выяснена, но температурная зависимость этого тока говорит, что он имеет туннельный характер. Предполагаемый механизм туннельного перехода через глубокие уровни в запрещенной зоне показан на рис. 2, д. Электрон из зоны проводимости переходит на примесный уровень и с него туннелирует в валентную зону.

Возможны и другие механизмы переходов, но этот наиболее вероятен.

В случае дальнейшего увеличения положительного смещения от точки д ток через диод опять начнет возрастать по тому же закону, что и в обычном диоде. Зонная схема, соответствующая этому случаю, изображена на рис. 6, е. Стрелки показывают, что носители должны взбираться на барьер, а не проходить сквозь него, как при туннелировании.

При подаче на переход обратного смещения перекрытие зон увеличится (рис. 2, ж). В результате против электронов на уровнях в валентной зоне материала p-типа окажется увеличенное число свободных уровней в зоне проводимости материала n-типа. Это приведет к проявлению результирующего потока электронов уже справа налево, и ток во внешней цепи будет обратным. При увеличении смещения обратный ток возрастает. Таким образом, туннельный механизм обратного тока обеспечивает малое обратное сопротивление туннельного диода в отличие от обычного диода, имеющего большое обратное сопротивление.

Следует отметить, что из-за квантово-механической природы туннельного эффекта возникает много трудностей при построении теории туннельного диода. Но в этом направлении ведутся интенсивные работы, особенно по теории вольтамперной характеристики туннельного диода. Полученные выражения пока довольно громоздки и неудобны для использования в аналитическом расчете цепей с туннельными диодами, так как не дают прямой зависимости между током и напряжением.

Но на основе этих работ становится возможным физический расчет самих туннельных диoдoв.

Выражение для вольтамперной характеристики можно получить на основе простых физических рассуждений, что позволит глубже уяснить природу туннельного диода.

Количественное выражение для общего туннельного тока может быть получено путем нахождения отдельных компонент этого тока, одной из которых является туннельный поток электронов из зоны проводимости электронного полупроводника в валентную зону дырочного полупроводника, а второй компонентой -- туннельный поток электронов из валентной зоны дырочного полупроводника в зону проводимости электронного полупроводника. Поток электронов, туннелирующих из зоны проводимости в валентную зону, определяется следующими факторами:

1) числом электронов в части зоны проводимости, перекрывающейся с валентной зоной;

2) числом свободных состояний в этом же энергетическом интервале в валентной зоне;

3) вероятностью туннелирования.

Основное преимущество туннельного диода перед обычными полупроводниковыми диодами и триодами заключается в его огромном быстродействии, обусловленном высоким частотным пределом. Это связано с двумя особенностями туннельного эффекта. Во-первых, сам туннельный переход электрона через потенциальный барьер p-n-перехода осуществляется за время около 10?13 сек, туннелирование электрона - квантовый процесс, непосредственно не зависящий от температуры. Во-вторых, туннельный диод - это прибор, работающий на основных носителях в отличие от остальных обычных полупроводниковых приборов, работающих на неосновных носителях. На этой особенности прибора необходимо остановиться подробнее.

В обычном полупроводниковом приборе основные носители, пройдя через p-n-переход и попав в материал другого типа проводимости, становятся неосновными для этого материала. Скорость движения неосновных носителей в полупроводниках мала, так как она определяется таким медленным процессом, как диффузия. Например, электроны из зоны проводимости электронного материала, перейдя через p-n-переход, попадут в зону проводимости дырочного материала, где они будут уже неосновными носителями, и дальше будут распространяться со скоростью, определяемой диффузионным механизмом.

Это накладывает ограничения на частотный диапазон работы таких приборов. Стремление к его расширению приводит к необходимости уменьшения продольных размеров прибора, что ведет, в частности, к возрастанию его проходной емкости, влияние которой становится определяющей уже на частотах в десятки мегагерц. Положение несколько улучшено в дрейфовых приборах, где скорость носителей увеличивается благодаря созданию дополнительного дрейфа по полю. Но так как и здесь причина инерционности (работа на неосновных носителях) не устранена, то она начинает сказываться на частотах в сотни мегагерц.

Иначе обстоит дело с туннельным диодом. Здесь электрон из зоны проводимости материала n-типа, пройдя сквозь потенциальный барьер, попадает в валентную зону вырожденного материала p-типа (а не в зону проводимости, как у обычных диодов). Вследствие нахождения уровня Ферми внутри валентной зоны в таком материале проводимость электронная, т. е. по характеру такая же, как проводимость металлов. В этом случае быстродействие прибора будет определяться временем диэлектрической релаксации (спадания) пространственного заряда основных носителей, которое для сильнолегированных полупроводников равно примерно l0?13 ? 10?14 сек (tрел =е0·е /а где а--удельная электропроводность).

Таким образом, механизм действия туннельного диода теоретически позволяет ему работать до частот 1013 Гц. Практически частотный предел прибора ограничивается техническими и конструктивными параметрами: емкостью p-n-перехода, индуктивностью выводов и сопротивлением потерь, суммирующегося из объемного сопротивления материала и сопротивления выводов. Поэтому расширение частотного диапазона туннельного диода определяется совершенством конструкции, соответствующей технологией прибора и правильностью выбора материала. Существующие туннельные приборы работают до частот 1010--1011 Гц и, учитывая непрерывный прогресс полупроводниковой электроники, можно ожидать дальнейшего расширения частотных возможностей туннельных диодов.

Наряду с высоким частотным диапазоном туннельный диод обладает и другим не менее важным преимуществом перед обычными полупроводниковыми приборами -- широким температурным диапазоном работы, что определяется особенностями тех условий, в которых существует туннельный эффект. С одной стороны, туннельный эффект наблюдается только в переходах, образованных вырожденными полупроводниками, в которых уровень Ферми лежит глубоко в разрешенных зонах и которые будут продолжать сохранять металлический тип проводимости (электронный) почти вплоть до абсолютного нуля. Действительно, туннельные диоды сохраняют свою характеристику вплоть до гелиевых температур (4.7° К). С другой стороны, собственная проводимость будет неразличима на фоне примесной проводимости до довольно высокой температуры из-за сильного легирования полупроводниковых материалов. Предельная рабочая температура туннельного диода будет определяться типом полупроводникового материала (шириной запрещенной зоны) и степенью его легирования. Так, у германиевых туннельных диодов отрицательный участок сопротивления пропадает при температуре +250° C, у кремниевых--при +400° C, у арсенидгалиевых --при +600°С.

Следует упомянуть и еще об одной особенности туннельного диода, опять определяемой принципом работы прибора. Это малая чувствительность к ядерному облучению (диоды из арсенида галлия выдерживают 1016-1017 нейтронов/см2). Диффузионные же полупроводниковые приборы из-за резкого влияния ядерного облучения на процессы диффузии сильна меняют свои параметры даже при малых дозах радиации. Малая чувствительность туннельных диодов к ядерному облучению в сочетании с возможностью работать при высокой температуре позволяет надеяться на то, что их можно будет использовать непосредственно в аппаратуре, находящейся в горячей зоне. В настоящее время изготавливаются туннельные диоды из «традиционного» германия и кремния, а также из интерметаллических соединений элементов III и V групп таблицы Менделеева, причем последние, более перспективны. Лучшим среди этих материалов для изготовления туннельных диодов сейчас является арсенид галлия (Ga As).

Обращенный диод

Обращенный диод -- это разновидность туннельного диода. Вольтамперная характеристика для германиевого диода приведена на рис. 3.

Подобная характеристика получится, если концентрации примесей в материале диода подобрать так, чтобы границы зон не перекрывались, а совпадали, т. е. при отсутствии внешнего смещения дно зоны проводимости электронного полупроводника находилось на одном уровне с потолком валентной зоны дырочного полупроводника. Очевидно, это будет при концентрациях примесей несколько меньших, чем для получения туннельного диода. При таком расположении зон туннельный эффект при положительных напряжениях смещения будет отсутствовать. При отрицательных напряжениях характеристика будет определяться туннельным эффектом из-за перекрытия зон. Как видно из вольтамперной характеристики, обращенный диод имеет ярко выраженные нелинейные свойства, что дает возможность использовать его для выпрямления малых сигналов. Однако в отличие от всех других полупроводниковых диодов он будет проводящим при отрицательных смещениях, что и послужило основанием назвать его обращенным диодом.

Сравнивая этот диод с лучшими обычными диодами, можно увидеть, что в пропускном направлении (когда к p-n-переходу приложено напряжение отрицательной полярности) он имеет низкое сопротивление уже при малом напряжении на нем, но предельно допускаемое напряжение в запорном направлении (когда к p-n-переходу приложено напряжение положительной полярности), сравнительно невелико (для германиевых диодов--около 0,3 ? 0.4 в). Таким образом, обращенный диод имеет в пропускном направлении обратную характеристику туннельного диода, а в запорном -- прямую характеристику обычного диода.

Особенность вольтамперной характеристики обращенного диода обусловила ему применение в качестве детектора малого сигнала, более эффективного, чем на обычных диодах, а также в качестве нелинейного элемента связи при каскадировании импульсных схем на туннельных диодах.

Следует отметить, что из-за слабого вырождения или даже его отсутствия, температурный диапазон работы обращенного диода уже, чем у туннельного диода. Особенность обращенного диода состоит также и в том. что, меняя степенью легирования величину перекрытия зон, можно получать диоды с малой величиной (менее 100 мкА) пикового туннельного тока, которые могут быть использованы в чувствительных токовых устройствах.

Методы изготовления туннельных диодов

Рассмотрев физику работы туннельного диода, можно сформулировать следующие требования, которым должен отвечать p-n-переход, предназначенный для работы в качестве туннельного диода.

Во-первых, переход от материала электронной проводимости к материалу с дырочной проводимостью должен быть очень резким, так как толщина переходного слоя должна быть малой, около 100 A°, чтобы повысить вероятность туннельного эффекта.

Во-вторых, переход должен быть образован вырожденными полупроводниками, чтобы обеспечить перекрытие зон.

Первое из этих требований предполагает применение особой технологии получения p-n-перехода, в то время как для выполнения второго требования необходимо применять сильнолегированный материал.

В настоящее время туннельные диоды можно изготавливать двумя методами: сплавлением и выращиванием из газовой фазы. Оба метода позволяют получить резкое распределение примесей в переходе и сильнолегированные области материала. Метод сплавления наиболее прост, поэтому и шире распространен для получения туннельных диодов. Температурный режим плавки имеет ряд особенностей, которые предотвращают диффузию примесей при сплавлении. Точечное сплавление может быть осуществлено и с помощью лазерного источника света с узким пучком большой мощности.

Второе требование выполняется добавлением в материал легирующих примесей, обладающих большой растворимостью в твердой фазе полупроводника. Из-за высокого значения критической концентрации примесей, при которой наступает вырождение (для германия -- около 2·1019 см?3, для кремния -- около 6·1019 см?3), металлы, применяемые для легирования обычных p-n-переходов, не могут быть использованы ввиду своей ограниченной растворимости. Наилучшими донорами для германия являются фосфор и мышьяк, а акцепторами -- галлий и алюминий. Для кремния лучшими акцепторами будут бор и галлий, а донорами -- мышьяк, фосфор и сурьма. Следует отметить, что и эти примеси имеют предельную концентрацию растворения (около 1020 -- 1021 см?3). В качестве исходного вещества допускается использование и поликристаллического материала. При этом наблюдается некоторое ухудшение характеристик туннельного диода по сравнению с диодами из монокристаллов.

Зависимость параметров от температуры

Сильное легирование материала туннельного диода обеспечивает возможность работы прибора в широком температурном диапазоне. Тем не менее, для правильного конструирования схем с туннельными диодами необходимо знать поведение основных параметров диода при изменении температуры.

Теоретические исследования показали, а практические опыты подтвердили зависимость температурной стабильности параметров туннельного диода от типа материала и степени его легирования. Поскольку концентрации примесей имеют значительный разброс (даже у приборов одного типа), постольку температурные зависимости могут меняться от диода к диоду, и для выявления закономерностей этих зависимостей необходимы массовые испытания.

Наибольшим исследованиям подвергались температурные зависимости тока максимума и минимума вольтамперной характеристики. Характер зависимости тока максимума от температуры определяется типом материала, на основе которого сделан туннельный диод, и степенью его легирования. Вид этой зависимости определяется суммарным влиянием двух факторов, действующих в противоположных направлениях:

- изменение ширины запрещенной зоны материала, что приводит к изменению вероятности туннелирования электронов;

- изменение с температурой статистических факторов, учитывающих плотность энергетических состояний и их заселенность в полупроводнике.

Второй фактор будет определяющим при малом вырождении материала (относительно слабое легирование), когда туннельный ток обусловлен электронами с энергетических уровней, расположенных около уровня Ферми. С увеличением температуры в этом случае будет наблюдаться уменьшение тока максимума, так как изменится заселенность энергетических уровней. Поэтому туннельные диоды на основе германия n-типа обладают отрицательным температурным коэффициентом тока максимума порядка 0.2--0,3%° C, потому что концентрация примесей в рекристаллизованной области ограничена значением 6·1019 см3.

Изменение ширины запрещенной зоны с температурой будет определяющим в диодах с сильным легированием, так как при глубоком вырождении ток будет определяться туннелированием электронов с уровней, энергия которых значительно меньше энергии, соответствующей уровню Ферми. С ростом температуры ток максимума должен расти (из-за повышения вероятности туннельного эффекта) при уменьшении ширины запрещенной зоны, что наблюдается и на практике у диодов на основе германия p-типа, начиная с определенной концентрации примесей в них (примерно 6·1019 см?3).

Зависимость характера изменения тока максимума туннельного диода с температурой от степени легирования позволяет подобрать такую концентрацию примесей в материале, при которой в широком температурном диапазоне будет наблюдаться малое изменение тока максимума. О величине концентрации примесей можно судить по определяемому ей напряжению u1, соответствующему току максимума диода. Так, германиевые туннельные диоды с напряжением U1 56 -- 60 мВ обладают минимальной зависимостью тока максимума в диапазоне 100° C.

Зависимость тока минимума I2 (избыточный туннельный ток) от температуры определяется изменением ширины запрещенной зоны, так как заселенность промежуточных энергетических уровней, переход электронов через которые определяет избыточный ток, не зависит от температуры, потому что они значительно удалены от уровня Ферми. Поэтому с ростом температуры ток минимума увеличивается главным образом из-за уменьшения ширины запрещенной зоны.

Отношение тока максимума к току минимума I1/I2 обычно уменьшается с ростом температуры, причем (для диодов на основе германия n-типа) тем сильнее, чем больше это отношение.

Температурные зависимости напряжения U1, соответствующего максимуму туннельного тока, напряжения U0, соответствующего минимальному значению отрицательного сопротивления, и напряжения U1xR, соответствующего минимальному дробовому шуму p-n-перехода, определяются в основном степенью легирования n-области и ослабевают с ростом концентрации примесей в ней. Обычно эти напряжения меняются мало и при увеличении температуры незначительно уменьшаются. Напряжение U2, соответствующее минимуму туннельного тока, с повышением температуры также уменьшается (из-за возрастания диффузионной составляющей тока). Температурный коэффициент напряжения из близок к температурному коэффициенту напряжения обычных германиевых диодов, включенных в прямом направлении.

Что касается туннельных диодов на основе кремния и интерметаллических соединений, то отсутствие достаточного количества опубликованных данных по исследованию температурных зависимостей параметров не дает возможности в настоящий момент сделать обобщающие выводы и установить закономерности. Однако качественные предположения об этих зависимостях могут быть сделаны на основе зонной структуры этих полупроводников. Так, зависимость тока максимума от температуры туннельных диодов из интерметаллических соединений будет по характеру подобна этой зависимости у германиевых диодов, так как в этих соединениях предполагаются прямые туннельные переходы (без взаимодействия электрона с решеткой). В кремнии, где туннельные переходы не прямые (с определенным взаимодействием электрона с решеткой), при увеличении температуры будет наблюдаться рост тока максимума. Можно с уверенностью сказать, что экспериментальные данные по этим материалам, которые, вероятно, будут опубликованы в ближайшее время, позволят установить характер температурных зависимостей основных параметров туннельных диодов из этих полупроводников.

Некоторые схемы на туннельных диодах

Наиболее просто с применением туннельных диодов строятся схемы автогенераторов. Так как туннельный диод представляет собой двухполюсник с отрицательным сопротивлением, устойчивым по напряжению, то при подключении к нему параллельного колебательного контура он может генерировать. При этом отрицательное сопротивление диода будет компенсировать потери, и в контуре могут возникнуть и поддерживаться незатухающие колебания. Обычные низкочастотные туннельные диоды хорошо работают на частотах, равных единицам мегагерц. Более высокочастотные диоды, в которых уменьшена емкость перехода и индуктивность выводов, генерируют на частотах тысячи мегагерц. Однако из-за небольших величин участка вольтамперной характеристики диода с отрицательным сопротивлением мощность, отдаваемая им на любых частотах, составляет доли мВт. Чтобы форма генерируемых колебаний не искажалась, как правило, применяют частичное подключение диода к контуру генератора. В этом случае сопротивление потерь, приведенное к выводам диода, должно быть равно его отрицательному сопротивлению. В реальных схемах приведенное сопротивление потерь выбирают больше отрицательного. сопротивления туннельного диода с тем, чтобы гарантировать надежное возбуждение генератора при изменении температуры, питающего напряжения и частоты. Учитывая, что параллельное сопротивление потерь в реальных колебательных контурах значительно превышает сопротивление туннельного диода, отвод приходится делать от незначительной части витков контура (рис. 4). На внутреннем сопротивлении источника смещения будет выделяться часть колебательной мощности, поэтому оно должно быть как можно меньше.

Рис. 4

Обычно туннельные диоды питаются от делителя напряжения, что приводит к неэкономному расходованию мощности питания. Действительно, для германиевых диодов напряжение смещения в режиме генерации равно 0,1-0,15 В, а минимальное напряжение подавляющего большинства химических источников тока составляет 1,2-2 В, поэтому и необходимо применять в цепи питания делители напряжения. При этом примерно 80-90% всей потребляемой мощности рассеивается на делителе. Исходя из соображений экономичности, для питания туннельных диодов целесообразно применять источники с возможно более низким напряжением. Выходное сопротивление делителя напряжения выбирают в пределах 5-10 Ом, и только в устройствах, где требуется наибольшая экономичность его повышают до 20-30 Ом. Отрицательное сопротивление туннельного диода должно превышать сопротивление делителя в 5-10 раз. Шунтировать столь малые сопротивления конденсаторами для уменьшения потерь высокочастотной энергии нецелесообразно, так как в ряде случаев это может привести к неустойчивой работе генератора, особенно, если режим его подбирался по максимуму отдаваемой мощности.

Отрицательное сопротивление туннельного диода сильно зависит от положения рабочей точки, так что при изменении питающего напряжения на 10% нормальная работа генератора может полностью нарушиться. Поэтому при питании диодов от химических источников тока - батарей, аккумуляторов, обеспечить их стабильную работу весьма трудно. Наиболее целесообразно питать их от окисно-ртутных элементов, напряжение которых незначительно меняется в процессе работы, а в ряде случаев приходится использовать предварительно стабилизированное напряжение или применять в делителе нелинейные сопротивления -в верхнем плече, стабилизирующие ток, а в нижнем - напряжение. Так, если в схеме автогенератора (рис. 5, а) вместо сопротивления R2 применить германиевый диод Д11 в прямом включении, как это показано на рис. 5, б, стабильность работы генератора улучшится и при изменении напряжения питания от 1,5 до 1 в никаких регулировок не потребуется.

Рис. 5. Схема автогенератора

В приведенных схемах автогенераторов на частоту 465 кГц катушка L1 намотана на 4-секционном полистироловом каркасе диаметром 4 мм с сердечником из феррита Ф-1000 диаметром 2,8 и длиной 12 мм. Обмотка катушки содержит 220 витков провода ПЭВ 0,13 с отводом от 18 витка. Напряжение высокой частоты на контуре составляет 1 в эфф.

Все упомянутые выше способы стабилизации несколько усложняют схемы, а в ряде случаев и увеличивают потребляемую мощность, поэтому широкого применения они не нашли. В аппаратуре туннельные диоды чаще всего применяются совместно с транзисторами. Известно, что у транзистора ток эмиттера сравнительно мало зависит от напряжения питания коллектора, особенно если смещение транзистора стабилизировано каким-либо способом. Поэтому, при питании диодов эмиттерным током транзистора, можно получить выигрыш не только в стабильности, но и в экономичности. Последняя повышается здесь из-за того, что потери на верхнем плече делителя устраняются, а дополнительная мощность, потребляемая туннельным диодом, невелика.

Помимо генераторов, настроенных на фиксированную частоту, туннельные диоды можно применить и в диапазонных генераторах. Правда, при этом приходится более тщательно подбирать связь диода с контуром, чтобы во всем перекрываемом диапазоне поддержать амплитуду колебании и мощность в нагрузке на заданном уровне.

Примером такого использования туннельного диода может служить схема гетеродина для супергетеродинного приемника, описанного в журнале "Радио" № 5 за 1962 г. Схема гетеродина получается при этом даже проще, чем на транзисторе (рис. 6).

Рис. 6. Схема гетеродина

Общее число витков в катушке L1 сохраняется, а для связи с туннельным" диодом поверх L1 со стороны ее заземленного конца наматывается обмотка L2, содержащая 10 витков провода ПЭЛШО 0,15. Обмотка связи с преобразователем L3 остается примерно прежней, но для наибольшей чувствительности число витков нужно заново подобрать. Емкости конденсаторов C1 и С2 остаются без изменения, Питается туннельный диод от общего источника. В этом случае сопротивление R2 должно быть равно 1,2 ком. Туннельный диод нужно выбрать с током максимума не более 1,5 мА. Более рационально для питания диода применить упомянутую выше схему стабилизации с помощью транзистора.

При проектировании генераторов на туннельных диодах следует стремиться получить максимальную добротность колебательного контура, с тем, чтобы увеличить мощность, отдаваемую в нагрузку. Для увеличения мощности можно также включить два или большее число диодов в схему генератора. При этом, как следует из рассмотрения энергетических соотношений, диоды выгодно соединять по постоянному току последовательно. Тогда напряжение на нижнем сопротивлении делителя будет вдвое больше, чем для одного туннельного диода, и потери на верхнем плече уменьшаются. Нужно иметь ввиду, что сопротивление нижнего плеча должно обязательно состоять из двух одинаковых сопротивлений, а их средняя точка должна быть соединена по постоянному току со средней точкой двух диодов (рис.7). В противном случае, устойчивая работа двух последовательно соединенных диодов невозможна. По переменному току можно соединить диоды параллельно или последовательно. В схеме, приведенной на рис. 5 каждый диод подключен к отдельной обмотке. Чтобы получить наибольшую мощность, связь каждого туннельного диода с контуром следует регулировать индивидуально.

Рис. 7. Генератор на туннельных диодах

Можно использовать туннельные диоды и в схемах апериодических усилителей. Однако, как указывается в литературе, такие апериодические усилители в диапазонах длинных и средних волн оказываются мало практичными из-за трудности в разделении нагрузки и источника сигнала. Нужно учесть и то, что транзисторы при сравнимом потреблении мощности питания обладают большим усилением в реальных схемах по сравнению с туннельными диодами.

Резонансные усилители на туннельных диодах строить сравнительно несложно. Они могут быть выполнены, например, по схеме автогенератора, в котором коэффициент обратной связи недостаточен для возбуждения колебаний. Таким схемам присущи все недостатки регенеративных усилителей: нестабильность порога регенерации, возможность возбуждения при изменении нагрузки, сужение полосы пропускания при повышении усиления. Однако такие усилители могут работать достаточно устойчиво, если не стремиться получить от них максимальное усиление. Схема с таким применением туннельного диода приведена на рис. 8. На рисунке показана схема входной части приемника прямого усиления с ферритовой антенной. Известно, что для согласования сопротивления контура антенны с входным сопротивлением транзистора, коэффициент трансформации трансформатора, образованного обмотками катушек L1 и L2 делается много меньше единицы.

Рис. 8. Верхняя обкладка конденсатора C1 должна быть заземлена.

Это приводит к тому, что напряжение сигнала на базе транзистора оказывается в 15- 20 раз меньше, чем напряжение на контуре L1C1. В схеме, показанной рис. 6 коэффициент связи выбран значительно больше обычного и отвод к базе транзистора Т1 сделан от 1/5 общего числа витков катушки L1. В этом случае контур L1C1 оказывается сильно шунтированным, полоса его расширяется и чувствительность приемника падает. Однако при подключении туннельного диода к дополнительной обмотке L3 контур частично "разгружается", его затухание и полоса пропускания возвращаются к нормальной величине. Таким способом удается получить выигрыш в чувствительности приемника в 4-5 раз. Число витков обмотки L3 выбирается с таким расчетом, чтобы затухание контура компенсировалось не полностью, и усилитель не возбуждался. Однако, чтобы получить максимальную чувствительность, нужно подойти к порогу возбуждения как можно ближе, поэтому смещение туннельного диода сделано регулируемым. Обмотка катушки L1 содержит 200 витков провода ПЭЛШО 0,15, намотанных в один слой виток к витку на ферритовом стержне длиной 110 мм, диаметром 8,4 мм с отводом от 44 витка. Обмотка катушки L3 содержит 8-10 витков провода ПЭЛШО 0,15, она намотана вблизи заземленного конца катушки L1. Недостатком предложенной схемы является то, что коэффициент перекрытия входной цепи уменьшается, так как из-за увеличенного коэффициента связи сильней будет сказываться входная емкость транзистора T1. Кроме того, к емкости контура добавится пересчитанная емкость туннельного диода. Поэтому, если требуется достаточно большое перекрытие, целесообразно туннельный диод применять с минимальной емкостью.

Более выгодно применять регенеративные усилители на фиксированную частоту, например в усилителе ПЧ супергетеродина (рис. 9). Для этого на один из контуров ПЧ наматывают дополнительную обмотку для туннельного диода. Смещение диода лучше сделать стабилизированным. Это позволит подойти достаточно близко к порогу регенерации и получить выигрыш в усилении в 8-10 раз. Нужно учитывать, что полоса пропускания усилителя ПЧ резко сужается, если включение туннельного диода не было заранее предусмотрено. В ряде случаев при подключении диода усилитель может возбудиться, хотя коэффициент связи недостаточен для генерации. Это происходит потому, что коэффициент усиления каскада с подключенным туннельным диодом становится больше максимальной устойчивой величины.

Рис. 9. усилитель ПЧ супергетеродина

При монтаже нужно учитывать, что туннельные диоды склонны к возбуждению на паразитных реактивных сопротивлениях. Поэтому выводы диода и связанных с ним деталей делают минимальной длины, а монтаж осуществляет так, как если бы схема предназначалась для работы на очень высоких частотах. Не следует в низкочастотных схемах применять туннельные диоды с высокой граничной частотой.

Экспериментируя с туннельными диодами, нужно избегать бросков тока и напряжения, иначе диод может выйти из строя. Подключать и отключать диод следует только при выключенном питании.

Практическая часть. Исследование ВАХ на туннельном диоде

VT1 открываясь создает базовый ток, открывает VT2 и пропускает его через ТД. Этот ток измеряется миллиамперметром mA, стоящим в цепи коллектора. Резистор R4 ограничивает тока через ТД. Изменяя плавно R2 управляем током текущим в диоде. При этом сопротивление вольтметра V должно быть много больше, чем сопротивление ТД (Rтд составляет порядка 200 ± 5 Ом, тогда RV должно быть порядка 2кОм). С целью защиты туннельного диода от резких скачков напряжения, он зашунтирован конденсатором С.

Достоинством данной схемы является то, что она позволяет измерить участок ВАХ с отрицательным сопротивлением.

Заключение

Подводя итог, следует отметить, что туннельные диоды существенно отличаются от всех ранее известных приборов как своими характеристиками, так и физическими процессами, лежащими в основе их работы. Сущность этих процессов заключается в квантовомеханическом туннельном эффекте.

Подробно рассмотрев принцип работы туннельных диодов можно сделать следующие выводы:

1. Отличительной особенностью туннельных диодов является наличие на прямой ветви вольтамперной характеристики участка с отрицательным дифференциальным сопротивлением. Это позволяет использовать туннельный диод в качестве усилительного элемента.

2. Туннельный эффект достигается за счет очень высокой концентрации примесей в p- и n- областях.

3. Так как возникновение туннельного тока не связано с инжекцией носителей заряда, туннельные диоды имеют малую инерционность и вследствие этого могут применяться для усиления и генерации высокочастотных колебаний.

В практической части была выполнена основная задача курсовой работы. Изучена схема с туннельным диодом, на которой исследовалась его вольтамперная характеристика. Главным достоинством применяемой схемы является то, что она позволяет измерить участок ВАХ с отрицательным сопротивлением.

Размещено на Allbest.ru


Подобные документы

  • Исследование параметров и характеристик туннельных диодов, а также принципа их работы и свойств. Анализ способности туннельного диода усиливать, генерировать и преобразовывать электромагнитные колебания. Обзор методов изготовления и применения диодов.

    реферат [712,9 K], добавлен 02.02.2012

  • Классификация, структура, принцип работы, обозначение и применение полупроводниковых диодов, их параметры. Расчет вольтамперных характеристик при малых плотностях тока. Особенности переходных характеристик диодов с р-базой. Методы производства диодов.

    курсовая работа [923,5 K], добавлен 18.12.2009

  • Полупроводниковые приборы. Выпрямительные свойства диодов. Динамический режим работы диодов. Принцип действия диода. Шотки, стабилитроны, стабисторы, варикапы. Туннельные диоды. Обращённый диод. Статическая характеристика и применение обращённого диода.

    реферат [515,0 K], добавлен 14.11.2008

  • Зависимость кондактанса от напряжения смещения для двухбарьерной гетероструктуры. Размеры слоев двухбарьерной квантовой структуры. Энергетическая диаграмма резонансно-туннельного диода с приложенным напряжением смещения. Методы измерения ВФХ РТД.

    контрольная работа [1,6 M], добавлен 01.02.2012

  • Характеристика полупроводниковых диодов, их назначение, режимы работы. Исследование вольтамперной характеристики выпрямительного полупроводникового диода, стабилитрона и работы однополупериодного полупроводникового выпрямителя. Определение сопротивления.

    лабораторная работа [133,6 K], добавлен 05.06.2013

  • Принцип действия полупроводниковых диодов различного назначения. Прямое и обратное включение выпрямительного диода. Статическое и динамическое сопротивление. Исследования стабилитрона и светодиода. Стабилизация напряжений в цепях переменного тока.

    лабораторная работа [230,6 K], добавлен 12.05.2016

  • Общие рекомендации к выполнению лабораторных работ. Изучение электронного осциллографа. Исследование выпрямительного и туннельного диодов. Исследование дифференциального включения операционного усилителя. Изучение свойств интегрирующего усилителя.

    учебное пособие [939,5 K], добавлен 25.03.2009

  • Рассмотрение принципов работы полупроводников, биполярных и полевых транзисторов, полупроводниковых и туннельных диодов, стабилитронов, варикапов, варисторов, оптронов, тиристоров, фототиристоров, терморезисторов, полупроводниковых светодиодов.

    реферат [72,5 K], добавлен 14.03.2010

  • Виды и обозначение диодов. Основные параметры выпрямительных диодов. Диоды Шоттки в системных блоках питания, характеристики, особенности применения и методы проверки. Проявление неисправностей диодов Шоттки, их достоинства. Оценка возможности отказа.

    курсовая работа [52,6 K], добавлен 14.05.2012

  • Назначение, преимущества, расчет технических параметров светоизлучающих диодов (СИД). Внешний квантовый выход и потери излучения. СИД как элемент электрической цепи и как элемент оптрона. Излучательная, спектральная, оптическая характеристики СИД.

    курсовая работа [1,9 M], добавлен 04.03.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.