Принципы построения сотовых систем передачи информации
Система сотовой связи - техническая система, допускающая большое разнообразие по вариантам конфигурации и набору выполняемых функций. Характеристика подвижных и базовых станций. Состав сети сотовой подвижной связи и блок-схемы цифровой подвижной станции.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 11.08.2011 |
Размер файла | 233,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Принципы построения сотовых систем передачи информации
сотовый связь сеть станция
1. История появления
Система сотовой связи - это сложная и гибкая техническая система, допускающая большое разнообразие по вариантам конфигурации и набору выполняемых функций. Она может обеспечивать передачу речи и других видов информации, в частности факсимильных сообщений и данных.
Использование современной технологии позволяет обеспечить абонентам таких сетей высокое качество речевых сообщений, надежность и конфиденциальность связи, миниатюрность радиотелефонов, защиту от несанкционированного доступа в сеть.
Появлению сетей сотовой подвижной связи (ССПС) предшествовал долгий период эволюционного развития радиотелефонной системы связи (РСС), в течение которого осваивались различные частотные диапазоны, и совершенствовалась техника связи. Идея сотовой связи была предложена в ответ на необходимость развития широкой сети подвижной РСС в условиях ограничений на доступные полосы частот.
В середине 40-х годов исследовательский центр Bell Labs американской компании AT&T предложил идею разбиения обслуживаемой территории на небольшие участки, которые стали называться сотами, (cell - ячейка, сота). Каждая сота должна была обслуживаться передатчиком с ограниченным радиусом действия и фиксированной частотой. Это позволило бы без взаимных помех использовать ту же самую частоту повторно в другой ячейке (соте). Но прошло около 30 лет, прежде, чем такой принцип организации связи был реализован на аппаратном уровне.
В 70-х годах начались работы по созданию единого стандарта сотовой связи для пяти североевропейских стран - Швеции, Финляндии, Исландии, Дании и Норвегии, который получил название NMT-450 (Nordic Mobile Telephone) и был предназначен для работы в диапазоне 450 МГц. Эксплуатация первых систем сотовой связи этого стандарта началась в 1981 г. Сети на основе стандарта NMT-450 и его модифицированных версий стали широко использоваться в Австрии, Голландии, Бельгии, Швейцарии, а также в странах Юго-Восточной Азии и Ближнего Востока. На базе этого стандарта в 1985 г. был разработан стандарт NMT-900 диапазона 900 МГц, который позволил расширить функциональные возможности и значительно увеличить абонентскую емкость системы.
В 1983 г. в США вступила в эксплуатацию сеть стандарта AMPS (Advanced Mobile Phone Service). Этот стандарт был разработан в исследовательском центре Bell Laboratories.
В 1985 г. в Великобритании был принят в качестве национального стандарт TACS (Total Access Communications System), разработанный на основе американского стандарта AMPS. В 1987 г. была расширена его рабочая полоса частот. Новая версия этого стандарта получила название ETACS (Enhanced TACS). Во Франции в 1985 г. был принят стандарт Radiocom-2000.
В конце 80-х годов приступили к созданию систем сотовой связи (ССС), основанных на цифровых методах обработки сигналов. С целью разработки единого европейского стандарта цифровой сотовой связи для выделенного в этих целях диапазона 900 МГц в 1982 г. Европейская Конференция Администраций Почт и Электросвязи (СЕРТ) создала специальную группу Groupe Special Mobile. Аббревиатура GSM дала название новому стандарту (позднее GSM стали расшифровывать как Global System for Mobile Communications). Результатом работы этой группы стали опубликованные в 1990 г. требования к системе ССС стандарта GSM.
В США в 1990 г. американская Промышленная Ассоциация в области связи TIA (Telecommunications Industry Association) утвердила национальный стандарт IS-54 цифровой сотовой связи. Этот стандарт более известен под аббревиатурой D-AMPS или ADC. В отличие от Европы, в США не были выделены новые частотные диапазоны, поэтому система должна была работать в полосе частот, общей с обычным AMPS. В то же время американская компания Qualcomm начала разработку нового стандарта сотовой связи, основанного на технологии шумоподобных сигналов и кодовом разделении каналов - CDMA (Code Division Multiple Access).
В 1991 г. в Европе появился стандарт DCS-1800 (Digital Cellular System 1800 МГц), созданный на базе стандарта GSM.
В Японии был разработан собственный стандарт сотовой связи JDC (Japanese Digital Cellular), близкий по своим показателям к стандарту D-AMPS. Стандарт JDC был утвержден в 1991 г. Министерством почт и связи Японии.
В 1993 г. в США Промышленная Ассоциация в области связи (TIA) приняла стандарт CDMA как внутренний стандарт цифровой сотовой связи, назвав его IS-95. В сентябре 1995 г. в Гонконге была открыта коммерческая эксплуатация первой сети стандарта IS-95.
В 1993 г. в Великобритании вступила в эксплуатацию первая сеть DCS-1800 One-2-One. На этом история стандартов сотовой подвижной не оканчивается. В скором будущем начнет свое шествие по миру технологии сотовой связи поколения 4G.
2. Функциональная схема сети сотовой подвижной связи
Система сотовой связи строится в виде совокупности ячеек (сот), покрывающих обслуживаемую территорию. Ячейки обычно схематически изображают в виде правильных шестиугольников. В центре каждой ячейки находится базовая станция (БС), обслуживающая все подвижные станции (ПС) в пределах своей ячейки. При перемещении абонента из одной ячейки в другую происходит передача его обслуживания от одной БС к другой. Все БС соединены с центром коммутации (ЦК) подвижной связи по выделенным проводным или радиорелейным каналам связи. С центра коммутации имеется выход на ТфОП. На рис. 1. приведена упрощенная функциональная схема, соответствующая описанной структуре системы.
Рис. 1. - Состав сети сотовой подвижной связи
Система сотовой связи может включать более одного ЦК, что может быть обусловлено эволюцией развития сети или ограниченностью емкости коммутационной системы. Например, возможна структура системы с несколькими ЦК (рис. 2), один из которых условно можно назвать головным, шлюзовым или транзитным.
Рис. 2. - Сеть сотовой связи с двумя центрами коммутации
В простейшей ситуации система содержит один ЦК (рис. 1), при котором имеется домашний регистр, и она обслуживает относительно небольшую замкнутую территорию, с которой не граничат территории, обслуживаемые другими системами. Если система обслуживает большую территорию, то она может содержать два или более ЦК (рис. 2), из которых только при «головном» имеется домашний регистр, но обслуживаемая системой территория по-прежнему не граничит с территориями других систем. В обоих этих случаях при перемещении абонента между ячейками одной системы происходит передача обслуживания, а при перемещении на территорию другой системы - роуминг. Если система граничит с другой ССС, то при перемещении абонента из одной системы в другую имеет место межсистемная передача обслуживания.
3. Подвижная станция
Блок-схема цифровой подвижной станции (ПС) приведена на рис. 3. В ее состав входят: блок управления; приемопередающий блок; антенный блок.
Блок управления включает в себя микротелефонную трубку (микрофон и динамик), клавиатуру и дисплей. Клавиатура служит для набора номера телефона вызываемою абонента, а также команд, определяющих режим работы ПС. Дисплей служит для отображения различной информации, предусматриваемой устройством и режимом работы станции.
Приемопередающий блок состоит из передатчика, приемника, синтезатора частот и логического блока.
В состав передатчика входят: АЦП - преобразует в цифровую форму сигнал с выхода микрофона и вся последующая обработка и передача сигнала речи производится в цифровой форме; кодер речи - осуществляет кодирование сигнала речи, т.е. преобразование сигнала, имеющего цифровую форму, по определенным законам с целью сокращения его избыточности; кодер канала - добавляет в цифровой сигнал, получаемый с выхода кодера речи, дополнительную (избыточную) информацию, предназначенную для защиты от ошибок при передаче сигнала по линии связи; с той же целью информация подвергается определенной переупаковке (перемежению); кроме того, кодер канала вводит в состав передаваемого сигнала информацию управления, поступающую от логического блока; модулятор - осуществляет перенос информации кодированного видеосигнала на несущую частоту.
Рис. 3 - Блок-схема подвижной станции.
Приемник по составу соответствует передатчику, но с обратными функциями входящих в него блоков: демодулятор - выделяет из модулированного радиосигнала кодированный видеосигнал, несущий информацию; декодер канала - выделяет из входного потока управляющую информацию и направляет ее на логический блок; принятая информация проверяется на наличие ошибок, и выявленные ошибки исправляются; до последующей обработки принятая информация подвергается обратной (по отношению к кодеру) переупаковке; декодер речи - восстанавливает поступающий на него с кодера канала сигнал речи, переводя его в естественную форму, со свойственной ему избыточностью, но в цифровом виде; ЦАП -преобразует принятый цифровой сигнал речи в аналоговую форму и подает его на вход динамика; эквалайзер - служит для частичной компенсации искажений сигнала вследствие многолучевого распространения; по существу, он является адаптивным фильтром, настраиваемым по обучающей последовательности символов, входящей в состав передаваемой информации; блок эквалайзера не является функционально необходимым и в некоторых случаях может отсутствовать.
Логический блок - это микрокомпьютер, осуществляющий управление работой ПС. Синтезатор является источником колебаний несущей частоты, используемой для передачи информации по радиоканалу. Наличие гетеродина и преобразователя частоты обусловлено тем, что для передачи и приема используются различные участки спектра (дуплексное разделение по частоте).
Антенный блок включает в себя антенну (в простейшем случае четвертьволновой штырь) и коммутатор прием/передача. Последний для цифровой станции может представлять собой электронный коммутатор, подключающий антенну либо на выход передатчика, либо на вход приемника, так как ПС цифровой системы никогда не работает на прием и передачу одновременно.
Блок-схема подвижной станции (рис. 3) является упрощенной. На ней не показаны усилители, селектирующие цепи, генераторы сигналов синхрочастот и цепи их разводки, схемы контроля мощности на передачу и прием и управления ею, схема управления частотой генератора для работы на определенном частотном канале и т.п. Для обеспечения конфиденциальности передачи информации в некоторых системах возможно использование режима шифрования; в этих случаях передатчик и приемник ПС включают соответственно блоки шифратора и дешифратора сообщений.
В ПС системы GSM предусмотрен специальный съемный модуль идентификации абонента (Subscriber Identity Module - SIM). Подвижная станция системы GSM включает также детектор речевой активности (Voice Activity Detector), который с целью экономного расходования энергии источника питания (уменьшения средней мощности излучения), а также снижения уровня помех, создаваемых для других станций при работающем передатчике, включает работу передатчика на излучение только на те интервалы времени, когда абонент говорит. На время паузы в работе передатчика в приемный тракт дополнительно вводится комфортный шум. В необходимых случаях в ПС могут входить отдельные терминальные устройства, например факсимильный аппарат, в том числе подключаемые через специальные адаптеры с использованием соответствующих интерфейсов.
Блок-схема аналоговой ПС проще рассмотренной цифровой за счет отсутствия блоков АЦП/ЦАП и кодеков, но сложнее за счет более громоздкого дуплексного антенного переключателя, поскольку аналоговой станции приходится одновременно работать на передачу и на прием.
4. Базовая станция
Блок-схема БС приведена на рис. 4. Особенностью БС является использование разнесенного приема, для чего станция должна иметь две приемные антенны. Кроме того, БС может иметь раздельные антенны на передачу и на прием. Другая особенность - наличие нескольких приемников и такого же числа передатчиков, позволяющих вести одновременную работу на нескольких каналах с различными частотами.
Одноименные приемники и передатчики имеют общие перестраиваемые опорные генераторы, обеспечивающие их согласованную перестройку при переходе с одного канала на другой; конкретное число N приемопередатчиков зависит от конструкции и комплектации БС. Для обеспечения одновременной работы N приемников на одну приемную и N передатчиков на одну передающую антенну между приемной антенной и приемниками устанавливается делитель мощности на N выходов, а между передатчиками и передающей антенной - сумматор мощности на N входов.
Приемник и передатчик имеют ту же структуру, что и в ПС, за исключением того, что в них отсутствуют ЦАП и АЦП, поскольку и входной сигнал передатчика, и выходной сигнал приемника имеют цифровую форму. Возможны варианты, когда кодеки (либо только кодек речи, либо и кодек речи, и канальный кодек) конструктивно реализуются в составе ЦК, а не в составе приемопередатчиков БС, хотя функционально они остаются элементами приемопередатчиков.
Рис. 4. - Блок-схема базовой станции
Блок сопряжения с линией связи осуществляет упаковку информации, передаваемой по линии связи на ЦК, и распаковку принимаемой от него информации. Для связи БС с ЦК обычно используется радиорелейная или волоконно-оптическая линия, если они не располагаются территориально в одном месте.
Контроллер БС (компьютер) обеспечивает управление работой станции, а также контроль работоспособности всех входящих в нее блоков и узлов.
Для обеспечения надежности многие блоки и узлы БС резервируются (дублируются), в состав станции включаются автономные источники бесперебойного питания (аккумуляторы).
В стандарте GSM используется понятие системы базовой станции (СБС), в которую входит контроллер базовой станции (КБС) и несколько (например, до шестнадцати) базовых приемопередающих станций (БППС) - рис. 5. В частности, три БППС, расположенные в одном месте и замыкающиеся на общий КБС, могут обслуживать каждая свой 120-градусный азимутальный сектор в пределах ячейки или шесть БППС с одним КБС - шесть 60-градусных секторов.
Рис. 5. - Система базовой станции стандарта GSM
В стандарте D-AMPS в аналогичном случае могут использоваться соответственно три или шесть независимых БС, каждая со своим контроллером, расположенных в одном месте и работающих каждая на свою секторную антенну.
5. Центр коммутации
Центр коммутации - это автоматическая телефонная станция ССС. обеспечивающая все функции управления сетью. ЦК осуществляет постоянное слежение за ПС, организует их эстафетную передачу, в процессе которой достигается непрерывность связи при перемещении ПС из соты в соту и переключение рабочих каналов в соте при появлении помех или неисправностей.
На ЦК замыкаются потоки информации со всех БС, и через него осуществляется выход на другие сети связи - стационарную телефонную сеть, сети междугородной связи, спутниковой связи, другие сотовые сети. В состав ЦК входит несколько процессоров (контроллеров).
Блок-схема центра коммутации представлена на рис. 6.
Рис. 6. - Блок-схема центра коммутации
Коммутатор подключается к линиям связи через соответствующие контроллеры связи, осуществляющие промежуточную обработку (упаковку/распаковку, буферное хранение) потоков информации. Управление работой ЦК и системы в целом производится от центрального контроллера. Работа ЦК предполагает участие операторов, поэтому в состав центра входят соответствующие терминалы, а также средства отображения и регистрации (документирования) информации. В частности, оператором вводятся данные об абонентах и условиях их обслуживания, исходные данные по режимам работы системы, в необходимых случаях оператор выдает требующиеся по ходу работы команды.
Важными элементами системы являются БД - домашний регистр, гостевой регистр, центр аутентификации, регистр аппаратуры. Домашний регистр (местоположения - Ноmе Location Register, HLR) содержит сведения обо всех абонентах, зарегистрированных в данной системе, и о видах услуг, которые могут быть им оказаны. В нем фиксируется местоположение абонента для организации его вызова и регистрируются фактически оказанные услуги. Гостевой регистр (местоположения - Visitor Location Register, VLR) содержит сведения об абонентах-гостях (роумерах), т.е. об абонентах, зарегистрированных в другой системе, но пользующихся в настоящее время услугами сотовой связи в данной системе. Центр аутентификации (Authentication Center) обеспечивает процедуры аутентификации абонентов и шифрования сообщений. Регистр аппаратуры (идентификации - Equipment Identity Register), если он существует, содержит сведения об эксплуатируемых ПС на предмет их исправности и санкционированного использования. В частности, в нем могут отмечаться украденные абонентские аппараты, а также аппараты, имеющие технические дефекты, например являющиеся источниками помех недопустимо высокого уровня.
Как и в БС, в ЦК предусматривается резервирование основных элементов аппаратуры, включая источник питания, процессоры и базы данных. БД часто не входят в состав ЦК, а реализуются в виде отдельных элементов. Устройство ЦК может быть различным в исполнении разных компаний-изготовителей.
Размещено на Allbest.ru
Подобные документы
Принципы построения систем сотовой связи, структура многосотовой системы. Элементы сети подвижной связи и блок-схема базовой станции. Принцип работы центра коммутации. Классификация интерфейсов в системах стандарта GSM. Методы множественного доступа.
реферат [182,3 K], добавлен 16.10.2011Современные стандарты сотовых сетей связи. Проектирование сотовой сети связи стандарта DCS-1800 оператора "Астелит". Оценка электромагнитной совместимости сотовой сети связи, порядок экономического обоснования эффективности разработки данного проекта.
дипломная работа [1,1 M], добавлен 10.06.2010История появления сотовой связи, ее принцип действия и функции. Принцип работы Wi-Fi - торговой марки Wi-Fi Alliance для беспроводных сетей на базе стандарта IEEE 802.11. Функциональная схема сети сотовой подвижной связи. Преимущества и недостатки сети.
реферат [464,8 K], добавлен 15.05.2015Первое использование подвижной телефонной радиосвязи. Принцип действия сотовой связи. Стандарты мобильной связи, использование для идентификации абонента SIM-карты. Основные типы сотовых телефонов. Основные и дополнительные функции сотовых телефонов.
курсовая работа [402,7 K], добавлен 10.05.2014Характеристика цифровой сотовой системы подвижной радиосвязи стандарта GSM. Структурная схема и состав оборудования сетей связи. Методы расчета повторного использования частот. Отношение интерференции Коченела. Расчет зон обслуживания. Безопасность труда.
дипломная работа [4,8 M], добавлен 30.08.2010Принципы работы сотовой связи: частотное, временное и кодовое разделение. Радиус действия сотового телефона. Стандарты сотовой связи с первого по третье поколения. Включение контроллера базовых станций в целях экономии наземных базовых коммуникаций.
реферат [76,4 K], добавлен 02.02.2012Обмен речевой, факсимильной и цифровой информацией между абонентскими системами. Общие принципы построения сетей стандарта GSM. Принципы построения наземной радиосети. Основные модели предсказания мощности сигнала. Модель для квазигладкой местности.
контрольная работа [732,9 K], добавлен 15.09.2015Разработка схемы построения ГТС на основе коммутации каналов. Учет нагрузки от абонентов сотовой подвижной связи. Расчет числа соединительных линий на межстанционной сети связи. Проектирование распределенного транзитного коммутатора пакетной сети.
курсовая работа [2,4 M], добавлен 08.01.2016Реализация операторами сотовой подвижной связи (СПС) услуг с добавленной стоимостью (VAS-услуг). Способ идентификации абонента с использованием кода, вводимого с клавиатуры. Классификация биометрических параметров человека. Определение параметров речи.
реферат [70,1 K], добавлен 23.10.2014Современные телекоммуникационные средства и история их развития. Системы сотовой радиотелефонной связи. Высокое качество речевых сообщений, надежность и конфиденциальность связи, защита от несанкционированного доступа в сеть, миниатюрность радиотелефонов.
реферат [483,9 K], добавлен 01.11.2004