Цилиндрическая антенна

Спиральная цилиндрическая диапазонная антенна, излучающая (принимающая) электромагнитные волны с эллиптической или круговой поляризацией; настройка и применение в дециметровом и сантиметровом диапазонах; использование в системах космической связи.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 14.01.2011
Размер файла 210,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Спиральная антенна

Диапазонная Антенна бегущей волны, излучающая (принимающая) электромагнитные волны с эллиптической или круговой поляризацией волн.

С. а. применяют преимущественно в дециметровом и сантиметровом диапазонах длин волн -- как самостоятельно, так и в качестве облучателей зеркальных и линзовых антенн (например, в системах космической связи). Различают плоские и пространственные С. а.

Плоскую С. а. обычно выполняют в виде двухпроводной линии, каждый проводник (плечо) которой имеет форму архимедовой (рис. 1, а) или логарифмической (рис. 1, б) спирали (см. Линия).

Передатчик (приёмник) подсоединяют к плечам в центральной части С. а. с помощью коаксиальной или открытой двухпроводной линии. Отношение максимальной частоты рабочего диапазона к минимальной (кратность диапазона) может достигать 20; коэффициент направленного действия обычно равен нескольким единицам.

Пространственные С. а. цилиндрической (рис. 2, а) или конической (рис. 2, б) формы выполняют из металлического провода, который подсоединяется к центральному проводнику коаксиальной линии; внешний проводник линии -- наружная оболочка -- подсоединяется к плоскому металлическому экрану. Их обычно используют в диапазонах частот, имеющих кратность 2--3; коэффициент направленного действия достигает 100 и более.

Рис. 1. Плоские спиральные антенны: а -- архимедова спираль; б -- логарифмическая спираль

Рис. 2. Пространственные спиральные антенны: а -- цилиндрическая; б -- коническая; 1 -- металлическая спираль; 2 -- металлический экран; 3 -- коаксиальная линия.

Эскиз спиральной цилиндрической (а) и конической (в) антенны

Спиральная антенна диапазона 145 МГц

Для малогабаритных переносных УКВ радиостанций применение коротких спиральных антенн вполне оправдано в связи с их прочностью и удобством использования радиостанций в режиме дежурного приема. Однако их невысокая эффективность заставляет искать пути ее увеличения.

Статьи [1, 2] натолкнули меня на идею исследовать свойства укороченных спиральных антенн с электрической длиной полволны. Было изготовлено и испытано около двадцати таких антенн на частоты 145...170 МГц. Антенны испытывались с радиостанциями ICOM Т22Е и YAESU FT-11, измерения уровней велись селективным микровольтметром SMV-8 со штыревой антенной, удаленной на 30 метров. Относительное измерение уровней проверялось при проведении радиосвязей на расстоянии от 10 до 60 км. Как и ожидалось, наибольшей эффективностью и широкополосностью обладают антенны с геометрической длиной, близкой к 0,12 длины волны. Такие антенны практически не уступают полноразмерным четвертьволновым штырям по усилению, проигрывая только по полосе пропускания, и превосходят по эффективности на 4...7 дБ штатные антенны радиостанций FT-11 и Т22Е.

Уменьшение геометрической длины полуволновой спиральной антенны в диапазоне 145... 155 МГц до 0,06 длины волны приводит к снижению усиления до значений, характерных для "фирменных" антенн, однако их полоса пропускания оказывается более широкой, и в случае размещения радиостанции с такой антенной на поясе оператора или в кармане одежды ее эффективность оказывается выше на 3...9 дБ - в зависимости от места размещения.

Как известно, применение противовеса на переносной радиостанции позволяет заметно повысить излучаемую мощность, однако в двухметровом диапазоне подобный противовес имеет длину около полуметрами не слишком удобен для "карманной" радиостанции (надо сказать, что использование отрезка гибкого монтажного провода, в отличие от жесткого противовеса, не дает положительного эффекта из-за сильного влияния тела оператора и посторонних предметов).

Поэтому естественным было желание исследовать свойства укороченных противовесов, выполненных аналогично спиральным антеннам. Четвертьволновые резонансные противовесы геометрической длины 13 см на частотах 144...146 МГц практической прибавки мощности не давали, и только при длине 20 см прибавка излучаемой мощности составляла 2 дБ. Если же электрическая длина противовеса составляла полволны, то при геометрической длине 13 см на частоте резонанса мощность излучения радиостанции возрастала на 5...6 дБ. Практические испытания показали возрастание сигнала на приемной стороне почти на 1,5... 2 балла при переходе со штатной антенны FA-82B радиостанции 1С Т22Е на полуволновую спиральную длиной 13 см с полуволновым противовесом той же длины, и примерно на полтора балла в случае радиостанции FT-11. Таким образом, применение полуволновой спиральной антенны с противовесом позволяет не только улучшить качество связи на предельных дистанциях, но и увеличить дальность связи, по меньшей мере, вдвое.

Недостатком таких антенн, как, впрочем, и всех сильно укороченных, является критичность в настройке. Конструкции антенны и противовеса одинаковы и представляют собой полиэтиленовый стержень диаметром 7 мм (внутренняя изоляция коаксиальногокабеля), на котором выполнена намотка 1 м провода ПЭВ-2-0,4. У антенны начало намотки запитывается в разъем, у противовеса - на клеммный лепесток соответствующего размера, который используется для установки под антенный разъем (впрочем, конструкция крепления противовеса может быть иной). Далее выполняются 3 витка с шагом 0,5 мм, затем ведется намотка с шагом 4...10 мм (зависит от выбранной длины антенны), и на конце антенны (или соответственно противовеса) плотно наматывают 15...20 витков. Настройка антенны ведется изменением шага витков первой и последней (третьей) намотки. Наиболее критичная для настройки антенны часть спирали - первые витки. Противовес настраивается аналогично.

Индикатором настройки служит селективный микровольтметр, но можно применить S-метр радиостанции или резонансный индикатор поля. Однако их желательно отградуировать, чтобы не получить прирост усиления 15...20дБ. Это поражает воображение, но, к сожалению, абсолютно не соответствует истине. После первоначальной настройки антенна и противовес помещаются в защитные чехлы или обматываются изолентой. Необходимо учесть, что при этом резонансная частота антенны (противовеса) понижается, и настройку надо повторять, снимая и вновь надевая чехол, пока антенна, заключенная в чехол, не будет настроена на необходимую частоту. В качестве оболочки антенны была использована термоусаживаюшаяся трубка, что придает антенне законченный вид и высокую прочность. КСВ антенны, измеренный панорамным измерителем КСВ Р4-11 на частоте резонанса, не превышал 1,6.

антенна цилиндрический поляризация диапазон

Литература:

1. Харченко К. Проводники с укорочением в антеннах//Радио. -1979. - №82. John S.Belrose (VE2CV). The 300-Ohm ribbon J antenna for 2 meters: A critical analysis//QST. - 1982. - №4

Размещено на Allbest.ru


Подобные документы

  • Основные соотношения, выбор рабочего типа волны и фидера. Описание конструкции антенны и АФР на ее раскрыве. Расчет параметров геометрических и электрических характеристик антенн круговой поляризации. Результаты численного моделирования антенны.

    курсовая работа [2,3 M], добавлен 20.05.2011

  • Изучение спиральной антенны дециметрового диапазона. Расчет геометрических размеров антенны и ее характеристик излучения. Основа работы цилиндрической спиральной антенны, определение диаметра его витков и шага намотки. Понятие круговой поляризации.

    курсовая работа [319,2 K], добавлен 06.01.2012

  • Методы создания эффективных антенн. Линейная антенная решётка. Оптимальная антенна бегущей волны. Коэффициент направленного действия. Плоские антенные решетки. Входное сопротивление излучающего элемента. Особенность и применение неэквидистантных решеток.

    курсовая работа [327,4 K], добавлен 14.08.2015

  • Расчет характеристик антенны бегущей волны (антенны Бевереджа), используемой в КВ диапазоне. Работа антенны бегущей волны, ее зависимость от качества заземления. Схема подключения "земляных" проводов. Конструктивное выполнение антенны, ее нагрузка.

    реферат [183,5 K], добавлен 17.04.2011

  • Расчет КПД фидера. Выбор типа и схемы питания приемной антенны, определение ее геометрических размеров и коэффициента усиления. Расчет диаграммы направленности антенны в горизонтальной и вертикальной плоскостях, коэффициента ее направленного действия.

    курсовая работа [1,3 M], добавлен 27.10.2011

  • Основные параметры антенны поверхностной волны и линии ее питания, разработка их эскиза в масштабе с указанием основных геометрических размеров и графики нормированных диаграмм направленности антенны. Расчет мощности, подводимой к антенне СВЧ генератором.

    курсовая работа [3,3 M], добавлен 03.06.2009

  • Преимущества использования генетических алгоритмов в решении оптимизационных задач. Расчет микрополосковой антенны с круговой поляризацией, имеющей в составе хромосомы двоичные и действительные переменные. Оптимизация антенны с прореженными подрешетками.

    реферат [20,6 K], добавлен 30.03.2011

  • Проект передающей рупорно-линзовой антенны с заданной длиной волны и шириной диаграммы направленности в плоскостях. Определение основных электрических и геометрических параметров антенны и ее элементов. Конструктивный расчет и разработка устройства АФУ.

    курсовая работа [5,9 M], добавлен 28.11.2010

  • Расчет параболических зеркальных антенн. Расчет диаметров зеркал, фокусных расстояний и профилей зеркал. Расчет облучателя. Расчет характеристик антенны. Выбор схемы и расчет поляризатора. Выбор размеров волновода. Расчет возбуждающего устройства.

    курсовая работа [720,5 K], добавлен 11.01.2008

  • Линейная (плоская) многоэлементная волноводно-щелевая антенна (ВЩА): излучающие элементы, разновидности, назначение. Основные параметры щели в волноводе. Антенны доплеровского измерения скорости и угла сноса самолета. Расчёт и конструкция решетки ВЩА.

    курсовая работа [1,2 M], добавлен 21.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.