Цифровые устройства и микропроцессоры
Кодирование информации в ЭВМ. Диапазон целых чисел с фиксированной и плавающей точкой. Логические функции и элементы. Характеристика видов комбинационных логических схем. Последовательные схемы и запоминающие устройства. Применение цифровых устройств.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | курс лекций |
Язык | русский |
Дата добавления | 19.12.2010 |
Размер файла | 1,8 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1. Емкость памяти определяется числом бит хранимой информации. Емкость кристалла обычно выражается также в битах и составляет 1024 бита, 4 Кбит, 16 Кбит, 64 Кбит и т.п. Важной характеристикой кристалла является информационная организация кристалла памяти MxN, где M - число слов, N -
разрядность слова. Например, кристалл емкостью 16 Кбит может иметь различную организацию: 16 Кx1, 4 Кx2 Кx8. При одинаковом времени обращения память с большей шириной выборки обладает большей информационной емкостью.
2. Временные характеристики памяти.
Время доступа - временной интервал, определяемый от момента, когда центральный процессор выставил на шину адреса адрес требуемой ячейки памяти и послал по шине управления приказ на чтение или запись данных, до момента осуществления связи адресуемой ячейки с шиной данных.
Время восстановления - это время, необходимое для приведения памяти в исходное состояние после того, как ЦП снял с ША - адрес, с ШУ - сигнал "чтение" или "запись" и с ШД - данные.
3. Удельная стоимость запоминающего устройства определяется отношением его стоимости к информационной емкости, т.е. определяется стоимостью бита хранимой информации.
4. Потребляемая энергия (или рассеиваемая мощность) приводится для двух режимов работы кристалла: режима пассивного хранения информации и активного режима, когда операции записи и считывания выполняются с номинальным быстродействием. Кристаллы динамической МОП-памяти в резервном режиме потребляют примерно в десять раз меньше энергии, чем в активном режиме. Наибольшее потребление энергии, не зависящее от режима работы, характерно для кристаллов биполярной памяти.
5. Плотность упаковки определяется площадью запоминающего элемента и зависит от числа транзисторов в схеме элемента и используемой технологии. Наибольшая плотность упаковки достигнута в кристаллах динамической МОП-памяти.
6. Допустимая температура окружающей среды обычно указывается отдельно для активной работы, для пассивного хранения информации и для нерабочего состояния с отключенным питанием. Указывается тип корпуса, если он стандартный, или чертеж корпуса с указанием всех размеров, маркировкой и нумерацией контактов, если корпус новый. Приводятся также условия эксплуатации: рабочее положение, механические воздействия, допустимая влажность и другие.
6.2 ОПЕРАТИВНЫЕ ЗАПОМИНАЮЩИЕ УСТРОЙСТВА
Полупроводниковые ЗУ подразделяются на ЗУ с произвольной выборкой и ЗУ с последовательным доступом. ЗУПВ подразделяются на:
- статические оперативные запоминающие устройства (СОЗУ);
- динамические оперативные запоминающие устройства (ДОЗУ).
ЗУ с последовательным доступом подразделяются на:
- регистры сдвига;
- приборы с зарядовой связью (ПЗС).
В основе большинства современных ОЗУ лежат комплиментарные МОП ИМС (КМОП), которые отличаются малой потребляемой мощностью. Это достигается применением пары МОП транзисторов с разным типом канала: n-МОП и p-МОП. Как видно на рис. 6.1, в КМОП инверторе как при низком, так и при высоком уровне сигнала на входе один из транзисторов закрыт. Поэтому потребление энергии происходит только при переключении "1"R"0" (и обратно).
Рис. 6.1. Схема КМОП инвертора
Чтобы реализовать на подложке n-типа не только p-канальный транзистор, но и n-канальный, последний изготавливается в так называемом "кармане", как показано на рис. 6.2
Аналогично на четырех МОП транзисторах (2 n-МОП и 2 p-МОП, включенных параллельно и последовательно) можно построить и другие базовые логические элементы "И" и "ИЛИ" и, соответственно, на их основе строятся все другие более сложные логические схемы.
Как известно, быстродействие МОП транзисторов в первую очередь ограничивается большой входной емкостью затвор-исток (подложка). Уменьшение геометрических размеров приборов (площади затвора и длины канала) при увеличении степени интеграции увеличивает граничную частоту.
Малое потребление энергии позволяет использовать КМОП ИМС с питанием от микробатареи как ПЗУ, где располагается часть операционной системы, которая осуществляет начальную загрузку всей системы (программа Setup).
6.2.1 ОЗУ СТАТИЧЕСКОГО ТИПА
В качестве элемента памяти используется простейший D-триггер защелка. В микросхеме 537РУ10 каждая ЯП состоит из восьми триггеров и располагаются ячейки на кристалле в виде прямоугольной матрицы.
На рисунке приведены обозначения: n-адресных входов (A0 .. An-1), DIO - двунаправленная восмиразрядная шина данных, вход разрешения выходов - ~OE, вход выбора микросхемы - ~CS и вход разрешения записи - ~WE, который часто обозначают по другому - ~WR/RD, подчеркивая этим, что при низком значении сигнала на этом входе производится запись байта, а при высоком уровне - чтение. EO, DI, WR - внутренние сигналы вырабатываемые блоком управления чтением/записью/хранением. Доступ к произвольной ЯПj производится с помощью прямоугольного дешифратора, состоящего из двух обычных дешифраторов, причем k-адресных линий заводится на дешифратор столбцов (DCc), а оставшиеся n-k линий подключены к дешифратору строк (DCr). Количество строк и столбцов будет соответственно равно 2n-k и 2k, т.е. общее количество, обслуживаемых ЯП, равно 2k * 2n-k = 2n.
На рисунке внизу показан фрагмент внутренней структуры микросхемы, по которому можно проследить основные режимы ее работы. Здесь же дано условное обозначение микросхемы.
На рисунке схемы с открытым коллектором и третьим состоянием обозначены ОК и Z - соответственно. Точками выделен один (j-ый) из восьми элементов i-ой ячейки памяти. Схема И с номером i = (r * 2k + c) является одним из 2n выходных узлов прямоугольного дешифратора, где r и c - номера строк и столбцов матрицы. Инверсный вход (C)hip (S)elect - ~CS, во всех микросхемах, где он встречается, служит для приведения схемы в рабочее состояние низким уровнем сигнала на этом входе.
Если ~CS = 1 (пассивный уровень), микросхема - не выбрана и операции с ней производить невозможно. Из рис. видно, что в этом случае на L-входе D-триггера - ноль, запись невозможна и триггер хранит ранее записанный бит. Прочитать выходной код - Q тоже нельзя, т.к. на прямом входе EO разрешения выхода запрещающий нулевой сигнал и вход/выход DIOi находится в третьем состоянии.
С поступлением ~CS = 0, схемы ИЛИ-НЕ разблокируются и дальше все зависит от значений сигналов ~WE и ~OE.
В режиме записи сигнал ~WE = 0. Поэтому независимо от значения сигнала ~OE на входе схемы, внутренний сигнал EO, тоже равен 0, и чтение данных во время записи невозможно. На верхнем входе элемента Иi - единица и, если на адресных входах код An-1,An-2,...,A1,A0(BIN) = i(DEC), то сигналы на линиях Yr и Yc тоже равны 1 и триггер ij прозрачен для записи входной информации DIOj.
В режиме чтения ~WE=1, ~OE=0 и при Yr=Yc=1, выходной сигнал ~Q после инверсии элементом Иij с открытым коллектором проходит на выход DIOi.
Следует обратить внимание на то, что выходы всех 2^n j-ых элементов памяти должны подключаться к общему j-му выводу микросхемы - DIOj. Такое объединение выходов возможно с помощью схемного либо монтажного И(ИЛИ). Монтажное И(ИЛИ) не требует дополнительных схем и может выполняться на элементах с открытым коллектором или с третьим состоянием. Внутри рассматриваемой схемы j-е выходы
ЭП объединены на общем резисторе Rj, служащем нагрузкой элементов И-НЕij с открытым коллектором.
Для увеличения информационной емкости,отдельные микросхемы группируются в банки и их одноименные выходы должны объединяться. По этой причине выходы всех микросхем памяти также выполняются с открытым коллектором либо с третьим состоянием.
В ЭВМ статическое ОЗУ используется в быстродействующей Cash-памяти.
6.2.2 ОЗУ ДИНАМИЧЕСКОГО ТИПА
В отличие от статических ЗУ, которые хранят информацию пока включено питание, в динамических
ЗУ необходима постоянная регенерация информации, однако при этом для хранения одного бита в ДОЗУ нужны всего 1-2 транзистора и накопительный конденсатор (рис. 6.3). Такие схемы более компактны. По этой причине, при одинаковых размерах кристалла, информационная емкость DRAM выше, чем у SRAM.
Количество адресных входов и габариты должны увеличиться. Чтобы не допустить этого, адресные линии внутри микросхемы разбиваются на две группы, например старшая и младшая половина. Две одноименные k-линии каждой группы подключаются к двум выходам внутреннего k-го демультиплексора
"1 в 2", а его вход соединяется с k-ым адресным входом микросхемы. Количество адресных входов, при этом уменьшается в два раза, но зато передача адреса в микросхему должна производиться, во-первых в два приема, что несколько уменьшает быстродействие, и во-вторых потребуется дополнительный внешний мультиплексор адреса. В процессе хранения бита конденсатор разряжается. Чтобы этого не допустить заряд необходимо поддерживать.
Естественно, что в микросхеме динамического ОЗУ есть один или несколько тактовых генераторов и логическая схема для восстановления информационного заряда, стекающего с конденсатора. Это несколько "утяжеляет" конструкцию ИМС.
Чаще всего и СОЗУ, и ДОЗУ выполнены в виде ЗУ с произвольной выборкой, которые имеют ряд преимуществ перед ЗУ с последовательным доступом.
Суммируя,можноперечислитьчемотличаетсядинамическоеОЗУотстатического:
1)мультиплексированием адресных входов, 2)необходимостью регенерации хранимой информации,
3)повышенной емкостью (до нескольких Мбит), 4)более сложной схемой управления. На рисунке внизу приведено условное обозначение м/с 565РУ7 емкостью 256K*1 (218K) и способ подключения 18-ти линий адреса к девяти адресным входам с помощью 9-ти мультиплексоров "2 в 1", например трех счетверенных селекторов-мультиплексоров типа 1533КП16.
Элементы памяти расположены на кристалле в виде матрицы 512 * 512 = 29 * 29, управляемой двумя линейными дешифратороми строк и столбцов, каждый с 9-ю адресными входами. Если сигнал строка/столбец ~R/C на входе выбора S мультиплексора, равен нулю, то A(0..8) = Y(0..8) и в микросхему передается адрес строки. Этот адрес фиксируется отрицательным фронтом строба адреса строк ~RAS. При ~R/C = 1 на выходы мультиплексора передается адрес столбцов A(9..17), который защелкивается отрицательным перепадом строба адреса столбцов ~CAS. Вход ~WE управляет записью/чтением. Оперативная память персональных ЭВМ - (SIMM, EDO, SDRAM..) является динамической памятью. Время обращения к ней меньше 10нс, а емкость достигает 256M в одном корпусе.
6.3. ПОСТОЯННЫЕ ЗАПОМИНАЮЩИЕ УСТРОЙСТВА
Программируемыепостоянныезапоминающиеустройства(ППЗУ)делятсянаоднократно программируемые (например, биполярные ПЗУ с плавкими соединениями) и рассматриваемые здесь многократно электрически программируемые МОП ПЗУ. Это полевой транзистор с плавающим затвором и МДОП (металл-диэлектрик-оксид полупроводник) транзистор. Обычно в качестве диэлектрика используют нитрид кремния.
6.3.1 ПОЛЕВОЙ ТРАНЗИСТОР С ПЛАВАЮЩИМ ЗАТВОРОМ
Конструкция и обозначение полевого транзистора с плавающим затвором представлены на рис. 6.6.
Рис. 6.6. МОП транзистор с плавающим затвором
Это р-канальный нормально закрытый МОП прибор. Здесь же показаны вольтамперные характеристики (ВАХ) транзистора в состоянии логических единицы и нуля (до и после записи информационного заряда). Плавающий затвор представляет собой область поликремния, окруженную со всех сторон диэлектриком, т.е. он электрически не связан с другими электродами и его потенциал "плавает". Обычно толщина нижнего диэлектрического слоя составляет десятки ангстрем. Это позволяет в сильном электрическомполеинжектироватьэлектронывплавающийзатвор:
-илисквозьпотенциальныйбарьерSi-SiO2путемквантовомеханическоготуннелирования;
- или над барьером "горячих" носителей, разогретых в поперечном или продольном поле при пробое кремниевой подложки.
Положительное смещение на верхнем затворе (относительно полупроводниковой подложки) вызовет накопление электронов в плавающем затворе при условии, что утечка электронов через верхний диэлектрический слой мала. Величина заряда Q, накопленного за время t, а значит, и пороговое напряжение, определяется как где J(t) - величина инжекционного тока в момент времени t.
Рис. 6.7 Инжекция горячих электронов в диэлектрик МДП-транзистора и другие процессы, проходящие при лавинном пробое подложки
Лавинный пробой подложки вблизи стока может приводить к неод-нородной деградации транзистора и, как следствие, к ограничению по числу переключений элемента памяти. МДП-транзистор с плавающим затвором может быть использован в качестве элемента памяти с временем хранения, равным времени диэлектрической релаксации структуры, которое может быть очень велико и, в основном, определяется низкими токами утечки через барьер Si-SiO2 (Фe=3.2 эВ). Fe - высота потенциального барьера. Такой элемент памяти обеспечивает возможность непрерывного считывания без разрушения информации, причем запись и считывание могут быть выполнены в очень короткое время.
6.3.2 МНОП ТРАНЗИСТОР
На рис. 6.8 приведена конструкция МНОП транзистора (металл-нитрид кремния-оксид кремния-полупроводник). Эффект памяти основан на изменении порогового напряжения транзистора при наличии захваченного в подзатворном диэлектрике положительного или отрицательного заряда, который хранится на глубоких (1.3-1.5 эВ) ловушках, в нитриде кремния вблизи границы SiO2-Si3N4.
Рис. 6.8. Конструкция МНОП транзистора: 1 - металлический затвор; 2,3 - области истока и стока соответственно; 4 - подложка.
Запись информационного заряда происходит так же, как и в МОП транзисторе с плавающим затвором. Высокая эффективность захвата электронов (или дырок) связана с большим сечением захвата на ловушки (порядка 10-13 кв.см.) и большой их концентрации (порядка 1019 куб.см.).
Рис. 6.9. Операция записи в МНОП-структуре (зонная диаграмма)
Ток в окисле Jox - туннельный ток инжекции, ток JN - ток сквозной проводимости в нитриде. В случае прямого туннелирования электронов в зону проводимости SiO2 сквозь треугольный барьер плотность тока определяется уравнением Фаулера-Нордгейма , где A - константы, Е - напряженность электрического поля. По мере накопления заряда поле на контакте уменьшается, что приводит к уменьшению скорости записи. Эффективность записи зависит также и от тока сквозной проводимости в нитриде.
Стирание информации (возврат структуры в исходное состояние) может осуществляться:
- ультрафиолетовым излучением с энергией квантов более 5.1 эВ (ширина запрещенной зоны нитрида кремния) через кварцевое окно;
- подачей на структуру импульса напряжения, противоположного по знаку записывающему.
В соответствии с ГОСТом такие ИМС имеют в своем названии литеры РФ и РР соответственно.
Время хранения информации в МНОП транзисторе обусловлено термической эмиссией с глубоких ловушек и составляет порядка 10 лет в нормальных условиях. Основными факторами, влияющими на запись и хранение заряда, являются электрическое поле, температура и радиация. Количество электрических циклов "запись-стирание" обычно не менее 105.
6.3.3 РЕПРОГРАММИРУЕМОЕ ПЗУ
Микросхемы РПЗУ допускают многократное, до сотен тысяч, циклов перепрограммирования на рабочем месте пользователя. Это свойство обеспечивается применением ЭП на МОП транзисторах с "плавающим затвором". Толщина изоляции "плавающего затвора" порядка 200 ангстрем. Информация считается стертой, если на выходах всех ЭП высокий уровень сигнала. В режиме программирования, на выбранный по адресной шине ЭП, куда необходимо записать ноль, подается импульс. Стирание осуществляется УФ-излучением (EPROM), либо электрически (EEPROM). При этом все ячейки переводятся в состояние "1". Записанная информация сохраняется в течение нескольких лет. Одной из м/с этого типа является EPROM 573РФ2 с организацией (2К * 8) и тристабильными выходами.
В Flash-памяти толщина изоляции "плавающего затвора" менее 100 ангстрем, поэтому при перепрограммировании используется туннельный эффект.
6.3.4 ОДНОКРАТНО ПРОГРАММИРУЕМЫЕ ПЗУ ППЗУ (PROM,OTP)
В качестве элементов памяти имеют набор плавких перемычек, которые в процессе программирования пережигаются импульсами тока. На рис.75 приведена схема ППЗУ.
Для любого значения адресных сигналов найдется единственный выход дешифратора "i" на котором сигнал Yi = 1, на остальных выходах будут нули. Потенциал базы j-транзистора будет зависеть в этом случае только от наличия или отсутствия перемычки fi. Если перемычка есть (fi=1), то на базе высокий уровень сигнала, транзистор открыт и выходной сигнал DOj = 0. Если перемычки нет (fi=0),то DOj=1.Пережиганием перемычек в соответствующих j-битах всех адресов, в микросхему записывается программа и/или данные. Выходной сигнал дешифратора Yi = mi, где mi-минтерм входных переменных A0..An-1.Транзистор с перемычками выполняет роль ИЛИ-НЕ, поэтому сигнал
2^n-1n-1
~DOi =ИЛИ(fi * mi), где mi = И(/Ak).
i=0k=0
причем /Ak = ~Ak, если Ak во входном наборе равна 0 и /Ak = Ak, если Ak = 1. Эти формулы
соответствуют формулам СДНФ (12), поэтому с помощью ПЗУ с n-адресными входами и m-выходами можно реализовать любые m-логических функций с n-переменными (учитывая инверсию сигнала выходным каскадом).
6.4 ЭНЕРГОНЕЗАВИСИМАЯ ПАМЯТЬ (NVSRAM)
Всякая память сохраняющая данные при отключении внешнего источника питания может считаться энергонезависимой - NonVolatile Memory, однако этот термин больше утвердился за статической оперативной памятью:
? с встроенной в микросхему литиевой батарейкой большой емкости .
? с дополнительной EEPROM на том же кристалле, причем обмен данными между SRAM и EEPROM производится либо программно либо автоматически при падении/восстановлении напряжения
6.5 УВЕЛИЧЕНИЕ РАЗРЯДНОСТИ ЯЧЕЙКИ ПАМЯТИ (СЛОВА)
Если требуется хранить данные размером в n-бит, а длина слова ячейки памяти m-бит (n>m), то прибегают к наращиванию длины слова. Делается это путем объединения n/m - микросхем в группы, причем все одноименные входы, кроме информационных, соединяются между собой. Например, если требуется динамическая память емкостью 256K с длиной слова равной байту, то необходимо объединить 8 / 1 = 8 микросхем типа 565РУ7, как это показано на рис.
На рисунке девять линий адреса показаны в виде шины - т.е. группы проводников, объединенных по функциональному признаку.
6.6 УВЕЛИЧЕНИЕ КОЛИЧЕСТВА ЯЧЕЕК ПАМЯТИ
Увеличение адресного пространства ЗУ в 2k раз требует столько же микросхем памяти и "k" дополнительных линий адреса, к уже имеющимся "n"линиям An+k-1, . .An+0, An-1, An-2, ... A1, A0. Дополнительные адресные линии An+k-1 .. An+0 должны разбивать требуемое адресное поле на 2k неперекрывающихся интервалов, покрываемых объемом памяти каждой отдельной микросхемы. Для решения этой задачи требуется дополнительный дешифратор "k в 2k". Например, если нужен блок ПЗУ емкостью 2K*4, то потребуется 8 микросхем 256*4 типа 541РТ1 и один дешифратор "3 в 8", как показано на рис.
Одноименные j- е выходы микросхем с открытым коллектором соединены с общим нагрузочным резистором Rj. Три старших дополнительных бита адреса A10,A9,A8 выбирают одну из восьми микросхем, а восемь младших бит адреса выводят содержимое одной из 256-ти ячеек памяти на шину данных (ШД).Пусть на шину адреса (ША) поступил код A10..A0 = 11000011010 = 61A. На всех выходах дешифратора, кроме шестого (A10..A8 = 110 =6) будет высокий уровень. Нулевой сигнал ~Y6 = 0 на входе ~OE1 шестой микросхемы разрешит прохождение записанной информации на выходы, а код 1 1010 = 1A(HEX) = 26(DEC) на адресных входах A7..A0 извлечет содержимое 26-ой ЯП и поместит его на четыре линии шины данных (ШД).
Особенностью метода является необходимость объединения по ИЛИ(И) одноименных выходов микросхем. Это можно выполнить или подключением одноименных выходов к 2n- входовым схемам ИЛИ(И) для каждого разряда, или выполнять выходные структуры микросхем памяти по схеме допускающей монтажное ИЛИ(И) с открытым коллектором или с третьим состоянием, что целесообразней.
По этой причине все микроросхемы памяти выпускаются с такими выходами.
6.7 ПРОГРАММИРУЕМЫЕ ЦИФРОВЫЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ
Проектирование современных цифровых устройств невозможно без использования программируемых цифровых ИС (ПЦИС). Они обладают следующими преимуществами перед дискретными элементами:
1)Уменьшение габаритов устройства, 2)Увеличение быстродействия, 3)Повышение надежности, 4)Защита от копирования результатов разработки, 5)Беспрецедентная скорость разработки и модификации проекта, 6)Разработку и модификацию устройства может вести потребитель на своем рабочем столе.
СТРУКТУРА ПЦИС
Схемные характеристики большинства ПЦИС основаны на реализации диз'юнктивной нормальной
формы (ДНФ) с помощью элементов И,ИЛИ,ИСКЛЮЧАЮЩЕЕ ИЛИ и инверторов. В состав ПЦИС входят также триггеры, мультиплексоры конфигурации буферы (прямые, инверсные, тристабильные) и программируемыеперемычки.Потребительскиесвойстваразрабатываемойпотребителемсхемы складываются, т.о. из жесткой топологии, закладываемой на заводе и из схемных особенностей проекта программируемых разработчиком (потребителем). Основой ПЦИС является набор матриц И и ИЛИ и макроячеек, включающих триггеры, буферы входов/выходов, элементы управления и обратные связи. Укрупненная структурная схема ПЦИС показана на рис.1.
Входы элементов И матрицы И принято обозначать на схемах (не по ГОСТ'у между прочим) как на рис.2 слева. В середине то же по ГОСТ.
В незапрограммированном виде пермычки находятся на месте. Удаляя (значок X) с помощью программа тораперемычки можноп олучитьлюбое логическое произведение (терм) входных переменных. На рис.2 перемычка от линии x1 до соответствующего входа И удалена. Обычно на входы матриц И заводятся не только прямые, но и инверсные значения переменных. Выходы матриц И, как и положено в ДНФ подключаются к элементам ИЛИ. Внимательно изучите рис.3 и особенно обозначение пересечений без соединения и с соединением проводников.
Выход элемента ИЛИ подключен через управляемый инвертор/повторитель, выполненный на
ИСКЛ.ИЛИ (=1), во-первых к входу триггера, во-вторых через мультиплексор MUX1 и управляемый тристабильный буфер к выходу.
Если буфер переведен в третье состояние сигналом E, внешний вывод микросхемы "выход/вход" может служить входом. Через MUX2, также может заводиться сигнал обратной связи с выхода триггера. Cигналы от перемычек F(use)1 и F(use)2 поступают на управляющие входы мультиплексоров "2->1" обеспечиваяподключениеодногоиздвухвходовкединственномувыходу,каждогоMUX. Программирование ПЦИС под конкретную задачу может многократно производиться конфигурированием перемычек с помощью специальных программаторов под управлением САПР.
7. ПРИМЕНЕНИЕ ЦИФРОВЫХ УСТРОЙСТВ
7.1 ПЕРЕДАТОЧНАЯ ХАРАКТЕРИСТИКА
В зависимости от схемотехники и технологии основного (базового) логического элемента (ЛЭ) существует несколько типов микросхем:
- ТТЛ(Ш) - транзисторно-транзисторная логика с диодами Шоттки или без них;
- КМОП / n-МОП - с комплементарными или n-МОП транзисторами;
- ЭСЛ - эмиттерно-связанная логика;
- МОПТШ - логика на арсенид-галлиевых МОП структурах с диодами Шоттки.
Важнейшей характеристикой базового ЛЭ, в литературе называемого также вентилем, является передаточная характеристика инвертора Uвых = f(Uвх).
Uвых1/Uoh - напряжение на выходе ЛЭ, соответствующее логической единице -"1". Uвых1пор/Uoht - пороговое напряжение на выходе ЛЭ, еще соответствующее - "1". Uвых0/Uol - напряжение на выходе ЛЭ, соответствующее логическому нулю - "0". Uвых0пор/Uolt - пороговое напряжение на выходе ЛЭ, еще соответствующее - "0". Uвх1/Uih - напряжение на входе ЛЭ, соответствующее логической единице - "1". Uвх1пор/Uiht - пороговое напряжение на входе ЛЭ, еще соответствующее - "1". Uвх0/Uil - напряжение на входе ЛЭ, соответствующее логическому нулю - "0". Uвх0пор/Uilt - пороговое напряжение на выходе ЛЭ, еще соответствующее - "0". Ucc - напряжение источника питания ЛЭ.
Чем больше разница между вых/вх сигналами и соответствующими им пороговыми значениями, тем выше помехоустойчивость ЛЭ.
7.2 СРАВНИТЕЛЬНЫЕ ХАРАКТЕРИСТИКИ НЕКОТОРЫХ ТИПОВ МИКРОСХЕМ
В таблице приведены усредненные типовые значениянекоторых параметров микросхем, выполненных по различным технологиям.
В различных справочникахприведенные выше значения могут незначительно отличаться друг от
7.3 КОЭФФИЦИЕНТ РАЗВЕТВЛЕНИЯ (Краз,N)
Коэффициент разветвления или нагрузочная способность - максимальное число входов которые можно подключить к отдельному выходу микросхемы (м/с). Причем сумма входных токов должна быть меньше выходного тока отдельного выхода м/с. Если м/с имеет несколько выходов, то суммарный ток всех выходов не должен превышать паспортного значения для данной микросхемы, даже если отдельные выходы микросхемы будут недогружены.
Для определения N находят отдельно две суммы входных токов для логического 0 и 1 на j-выходе.
Минимальная сумма и будет Краз. m,n - целые значения.
7.4 СОПРЯЖЕНИЕ РАЗЛИЧНЫХ СЕРИЙ МИКРОСХЕМ
Внизу дана таблица соответствия некоторых отечественных и зарубежных серий микросхем, выполненных по двум наиболее распространенным технологиям КМОП и ТТЛ. В новых разработках рекомендуется применять серии КМОП (например 1554,1564,1594 и др.) и 1533 (AC, HC,ACT,HCT,FCT и ALS). Преимуществом обладают КМОП серии, число которых превышает 25 наименований по сравнению с ТТЛ(Ш) - около восьми.
КМОПТТЛ
отечзаруб+Uп,Вотечзаруб+Uп,В
164,176 |
4000(74C) |
3..15;9 |
155 |
74 |
5 |
|
561,564 |
4000A |
3..15 |
158 |
74L |
5 |
|
1561 |
4000B |
3..18 |
131 |
74H |
5 |
|
1554 |
74AC |
2..6 |
555 |
74LS |
5 |
|
1564 |
54/74HC |
2..6 |
531 |
74S |
5 |
1594ACT2..6153374ALS5
-FCT2..6153174F5
- |
ACQ/ACTQ2..6 |
- |
FASTr |
5 |
|
- |
FCTx/FCTxT 2..6 |
- |
BCT |
5 |
В практике иногда встречаеся ситуация,когда в одном устройстве встречаются микросхемы раличных
серий и даже технологий. Например, если входная частота сигнала равна 1024МГц, то для ее измерения не обязательно использовать только ЭСЛ микросхемы с высоким быстродействием, но и с высоким потреблением. Достаточно взять только один ЭСЛ счетчик/делитель на 16, а выходной сигнал 64МГц можно считать и обрабатывать менее быстродействующими микросхемами с меньшим энергопотреблением.
Передаточные характеристики ЛЭ различных серий и технологий различаются, поэтому соединять непосредственно такие ЛЭ чаще всего нельзя - требуются дополнительные элементы (схемы) сопряжения. Количество вариантов сопряжения растет в геометрической прогрессии, поэтому остановимся на КМОП и ТТЛ м/схемах (см. таблицу). Остальные варианты см. в справочниках, например сопряжение ЭСЛ - ТТЛ (Логические ИС КР1533 и КР1554."Бином".1993г.,стр.24).
+ : обозначает, что микросхемысопрягаются в указанном направлении, +- : сопрягаются с ограниченным коэффициентом разветвления по выходу, OKR : применяется открытый коллектор или резистор, подключенный к +5в или промежуточный элемент HCT, R,ПУ : используется резистор, подключенный к +10в или элементы 40109,14504 или преобразователь уровней LTC1045, ПУ: должны применяться элементы 74C901/2,4049/50,14504 или LTC1045. На основе таблицы внизу даются развернутые схемы сопряжения.
7.5 УПРАВЛЕНИЕ ЛОГИЧЕСКИМИ СХЕМАМИ ОТ КОМПАРАТОРОВ И ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ
Помимо аналого-цифровых преобразователей (АЦП), работой цифровой логики могут управлять операционные усилители (ОУ) и компараторы, преобразующие аналоговый сигнал Uвх = (U+ - U-) в перепад напряжения: Uвых = "1" при (U+ > U-) и Uвых = "0" при (U+ <= U-) для компараторов и Uвых = "-1" если (U+ <= U-) для ОУ. Ниже на рисунке приведены схемы сопряжения логических элементов с компараторами с открытым коллектором и операционными усилителями.
В схеме (а) выходной каскад компаратора и логический элемент питаются одним напряжением, поэтому согласование уровней лог.0 и 1 выполняется автоматически. В схеме (б) напряжение на выходе ОУ может значительно превышать уровни: (Uвых-) < лог.0 а (Uвых+) > Uп, но т.к. входы КМОП микросхем защищены диодами, ограничивающими входные сигналы 0 и Uп, то дополнительных внешних ограничителей не требуется. В ТТЛ(Ш) микросхемах (в) все входы имеют диоды, ограничивающие входной сигнал снизу на уровне нуля, а для ограничения входного сигнала сверху требуется внешний диод. Резисторы служат для уменьшения входных токов ЛЭ, чтобы не пережечь ограничительные диоды. В схеме (а) резистор к тому же является нагрузкой компаратора с открытым коллектором.
7.6 ОПРЕДЕЛЕНИЯ НЕКОТОРЫХ ПАРАМЕТРОВ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
Ниже приведены некоторые параметры в отечественном по ГОСТ 19480-89 и международном обозначении.
tзд.р.1,0 / tPHL - время задержки распространения при включении. Интервал времени между входным и выходным импульсами, в течение которого выходной сигнал интегральной микросхемы (ИМС) переходит от H к L уровню, измеренный на уровне 0,5 или на других заданных значениях.
tзд.р.0,1 / tPLH - то же - от L к H уровню.
tзд.р.ср / tPAV - среднее время задержки распространения.
t1,0 / tTHL - время перехода при включении ИМС. Время, в течение которого выходное напряжение ИМС переходит от H к L уровню, измеренное на уровне 0,1 и 0,9 или на других заданных значениях.
t0,1 / tTLH - то же - от L к H уровню.
tуст / tSU - время установления входного сигнала. Интервал времени между началом сигнала на одном заданном входе и активном переходе на другом заданном входе.
tу / tH - время удержания. Время, в течение которого сигнал удерживается на заданном входе после активного перехода на другом заданном входе.
Краз / N - коэффициент разветвления по выходу. Число единичных нагрузок, которые можно подключить к выходу ИМС.
Коб / Ni - коэффициент объединения по входу. Число входов ИМС, по которым реализуется ЛФ.
Uп / Ucc - напряжение источника питания ИМС.
СПИСОК ЛИТЕРАТУРЫ
1. Галкин В.И. Промышленная электроника. - Мн.: Вышэйшая школа, 1989.
2. Гусев В.Г., Гусев Ю.М. Электроника. - М.: Высшая школа, 1991.
3. Гутников В.С. Интегральная электроника в измерительных устройствах. -
Ленинград: Энергоатомиздат, 1990.
4. Шило В.Л. Популярные цифровые микросхемы. - М.: Металлургия, 1988.
5. Фролкин В.Т., Попов Л.Н. Импульсные цифровые устройства. - М.: Радио и связь, 1992.
6. Быстров Ю.А., Мироненко И.Г. Электронные цепи и устройства. - М.: Высшая школа, 1999.
7. Бирюков С.А. Применение цифровых микросхем серий ТТЛ и КМОП. - М.: МК, 2000.
8. Мнеян М.Г. Физика машинной памяти. - М.: Высшая школа, 1990.
9. Калабеков Б.А. Цифровые устройства и микропроцессорные системы. - М.:
Горячая линия - телеком, 2000. - 336 с.
10. Угрюмов Е.П. Цифровая схемотехника. БХВ. - Петербург, 2000.
11. Токхейм Р. Основы цифровой электроники. - М.: Мир, 1998.
12. Кучумов А.И. Электроника и схемотехника. - М.: Гелиос АРВ, 2002.
13. Новиков Ю.В. Основы цифровой схемотехники. - М. Мир, 2001.
Размещено на Allbest.ru
Подобные документы
Проектирование операционного устройства, реализующего получение операнда и результата. Алгебраическое вычитание для чисел с фиксированной точкой в простых дополнительных кодах. Канонический метод синтеза автоматом комбинационных схем с жесткой логикой.
курсовая работа [1,7 M], добавлен 08.06.2011Обзор современных схем построения цифровых радиоприемных устройств (РПУ). Представление сигналов в цифровой форме. Элементы цифровых радиоприемных устройств: цифровые фильтры, детекторы, устройства цифровой индикации и устройства контроля и управления.
курсовая работа [1,3 M], добавлен 15.12.2009Сферы применения цифровых устройств и цифровых методов. Преобразование одного кода в другой с помощью преобразователей кодов. Структурная схема устройства, его основные узлы. Синтез схем формирования входного двоичного кода и его преобразования.
реферат [719,9 K], добавлен 10.02.2012Триггерные устройства как функциональные элементы цифровых систем: устойчивые состояния электрического равновесия бистабильных и многостабильных триггеров. Структурные схемы и классификация устройств, нагрузки и быстродействие логических элементов.
реферат [247,1 K], добавлен 12.06.2009Проектирование цифровых и логических схем, как основных узлов судовых управляющих и контролирующих систем. Основные компоненты структурной схемы и алгоритм функционирования цифрового регистрирующего устройства. Синтез и минимизация логических схем.
курсовая работа [31,0 K], добавлен 13.05.2009Структуры микропроцессорных систем управления, назначение мультиплексоров, схемы на логических элементах. Анализ устройства цифро-аналогового преобразователя с весовой резисторной матрицей. Структура и виды операций арифметически-логических устройств.
контрольная работа [163,2 K], добавлен 02.10.2015Цифровые электронные устройства: история развития, классификация электронных, комбинационных и логических устройств. Классификация вентилей как энергопотребителей. Элементная база; энергетика и скорость производства и обработки цифровой информации.
курсовая работа [1,2 M], добавлен 26.09.2011Алгоритмическое, логическое и конструкторско-технологическое проектирование операционного автомата. Изучение элементной базы простейших цифровых устройств. Разработка цифрового устройства для упорядочивания двоичных чисел. Синтез принципиальных схем.
курсовая работа [2,5 M], добавлен 07.01.2015Буферные запоминающие устройства буквенно-цифровых СОИ. Функциональная схема модуля БЗУ емкостью 3Кх8. Вспомогательное запоминающее устройство телевизионных графических СОИ. Кодирование информации о графике знаков в ПЗУ знакогенераторов телевизионных СОИ.
контрольная работа [41,6 K], добавлен 01.12.2010Разработка функционально законченного устройства для обработки входных сигналов линии с использованием цифровых устройств и аналого-цифровых узлов. Алгоритм работы устройства. Составление программы на языке ассемблера. Оценка быстродействия устройства.
курсовая работа [435,5 K], добавлен 16.12.2013