Коммутируемые и виртуальные сети Ethernet
История создания сети Ethernet, основные характеристики стандартов. Процессы передачи данных между различными парами абонентов с помощью пакетов или блоков информации. Основы технологии организации кабельных систем, применение магистральных коммутаторов.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 17.12.2010 |
Размер файла | 537,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
59
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
УКРАИНСКИЙ ГОСУДАРСТВЕННЫЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ
Кафедра KТ и ВМ
Курсовая работа
ТЕМА: “Коммутируемые и виртуальные сети Ethernet”
Выполнил:
студент группы 3-IС-27
Куделя С.В.
Проверил:
доцент Безуб В.Н.
Днепропетровск 2009
Содержание
Введение
1. Сети Ethernet и Fast Ethernet
2. Передача информации в сети
2.1 Назначение пакетов и их структура
2.2 Адресация пакетов
3. Основы технологии организации кабельных систем сети
3.1 Основы организации сети
3.2 Принципы коммутации сегментов и узлов локальных сетей
4. Коммутируемые сети Ethernet
4.1 Коммутированная локальная сеть Ethernet
4.2 Атрибуты коммутаторов Ethernet
4.3 Классы коммутаторов Ethernet
4.4 Возможности коммутаторов
5. Виртуальные локальные сети
6. Применение коммутаторов
Заключение
Литература
Введение
Компьютерной сетью называют совокупность узлов (компьютеров, терминалов, периферийных устройств), имеющих возможность информационного взаимодействия друг с другом с помощью специального коммуникационного оборудования и программного обеспечения. Размеры сетей варьируются в широких пределах - от пары соединенных между собой компьютеров, стоящих на соседних столах, до миллионов компьютеров, разбросанных по всему миру (часть из них может находиться и на космических объектах). По широте охвата принято деление сетей на несколько категорий.
Локальные вычислительные сети, ЛВС или L4W(Local-Area Network), позволяют объединять компьютеры, расположенные в ограниченном пространстве. Для локальных сетей, как правило, прокладывается специализированная кабельная система, и положение возможных точек подключения абонентов ограничено этой кабельной системой. Иногда в локальных сетях используют и беспроводную связь (wireless), но и при этом возможности перемещения абонентов сильно ограничены.
Локальные сети можно объединять в более крупномасштабные образования - CAN (Campus-Area Network - кампусная сеть, объединяющая локальные сети близко расположенных зданий), MAN (Metropolitan-Area Network - сеть городского масштаба), WAN (Wide-Area Network - широкомасштабная сеть), GAN (Global-Area Network - глобальная сеть). Сетью сетей в наше время называют глобальную сеть - Интернет. Для более крупных сетей также устанавливаются специальные проводные или беспроводные линии связи или используется инфраструктура существующих публичных средств связи. В последнем случае абоненты компьютерной сети могут подключаться к сети в относительно произвольных точках, охваченных сетью телефонии, ISDN или кабельного телевидения.
Понятие интранет (intranet) обозначает внутреннюю сеть организации, где важны два момента:
1) изоляция или защита внутренней сети от внешней (Интернет);
2) использование сетевого протокола IP и Web-технологий (прикладного протокола HTTP).
В аппаратном аспекте применение технология интранет означает, что все абоненты сети в основном обмениваются данными с одним или несколькими серверами, на которых сосредоточены основные информационные ресурсы предприятия.
В сетях применяются различные сетевые технологии, из которых в локальных сетях наиболее распространены Ethernet, Token Ring, l00VG-AnyLAN, ARCnct, FDDI. В глобальных сетях применяются иные технологии. Каждой технологии соответствуют свои типы оборудования.
Оборудование сетей подразделяется на активное - интерфейсные карты компьютеров, повторители, концентраторы и т. п. и пассивное - кабели, соединительные разъемы, коммутационные панели и т. п. Кроме того, имеется вспомогательное оборудование - устройства бесперебойного питания, кондиционирования воздуха и аксессуары - монтажные стойки, шкафы, кабелепроводы различного вида. С точки зрения физики, активное оборудование - это устройства, которым необходима подача энергии для генерации сигналов, пассивное оборудование подачи энергии не требует.
Оборудование компьютерных сетей подразделяется на конечные системы (устройства), являющиеся источниками и/или потребителями информации, и промежуточные системы, обеспечивающие прохождение информации по сети. К конечным системам, ES (End Systems), относятся компьютеры, терминалы, сетевые принтеры, факс-машины, кассовые аппараты, считыватели штрих-кодов, средства голосовой и видеосвязи и любые другие периферийные устройства, снабженные тем или иным сетевым интерфейсом. К промежуточным системам, IS (Intermediate Systems), относятся концентраторы (повторители, мосты, коммутаторы), маршрутизаторы, модемы и прочие телекоммуникационные устройства, а также соединяющая их кабельная и/или беспроводная инфраструктура. Действием, «полезным» для пользователей, является обмен информацией между конечными устройствами. Поток информации, передаваемый по сети, называют сетевым трафиком. Трафик кроме полезной информации включает и служебную ее часть - неизбежные накладные расходы на организацию взаимодействия узлов сети. Пропускная способность линий связи, называемая также полосой пропускания (bandwidth), определяется как количество информации, проходящей через линию за единицу времени. Измеряется в бит/с (bps - bit per second), кбит/с (kbps), Мбит/с (Mbps), Гбит/c (Gbps), Тбит/с (Tbps)... Здесь, как правило, приставки кило-, мега-, гига-, тера- имеют десятичное значение (103, 106, 10", 10,г), а не двоичное (210, 220, 2м, 2*°). Для активного коммуникационного оборудования применимо понятие производительность, причем в двух различных аспектах. Кроме «валового» количества неструктурированной информации, пропускаемого оборудованием за единицу времени (бит/с), интересуются и скоростью обработки пакетов (pps - packets per second), кадров (fps - frames per second) или ячеек (cps - cells per second). Естественно, при этом оговаривается и размер структур (пакетов, кадров, ячеек), для которого измеряется скорость обработки. В идеале производительность коммуникационного оборудования должна быть столь высокой, чтобы обеспечивать обработку информации, приходящей на все интерфейсы (порты) на их полной скорости (wire speed).
В любой сети применяется тот или иной метод управления обменом (он же метод доступа, он же метод арбитража), разрешающий или предотвращающий конфликты между абонентами. От эффективности выбранного метода зависит очень многое: скорость обмена информацией между компьютерами, нагрузочная способность сети, время реакции сети на внешние события и т.д. Метод управления - это один из важнейших параметров сети. Тип метода управления обменом во многом определяется особенностями топологии сети, но в то же время он и не привязан жестко к топологии.
Методы доступа к среде передачи делятся на вероятностные и детерминированные.
При вероятностном (probabilistic) методе доступа узел, желающий послать кадр в сеть, прослушивает линию. Если линия занята или обнаружена коллизия (столкновение сигналов от двух передатчиков), попытка передачи откладывается на некоторое время. Основные разновидности:
# CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance) - множественный доступ с прослушиванием несущей и избежанием коллизий. Узел, готовый послать кадр, прослушивает линию. При отсутствии несущей он посылает короткий сигнал запроса на передачу (RTS) и определенное время ожидает ответа (CTS) от адресата назначения. При отсутствии ответа (подразумевается возможность коллизии) попытка передачи откладывается, при получении ответа в линию посылается кадр. При запросе на широковещательную передачу (RTS содержит адрес 255) CTS не ожидается. Метод не позволяет полностью избежать коллизий, но они обрабатываются на вышестоящих уровнях протокола. Метод применяется в сети Apple LocalTalk, характерен простотой и низкой стоимостью цепей доступа.
# CSMA/CD (Carrier Sense Multiple Access/Collision Detect) - множественный доступ с прослушиванием несущей и обнаружением коллизий. Узел, готовый послать кадр, прослушивает линию. При отсутствии несущей он начинает передачу кадра, одновременно контролируя состояние линии. При обнаружении коллизии передача прекращается и повторная попытка откладывается на случайное время. Коллизии - нормальное, хотя и не очень частое явление для CSMA/CD, Их частота связана с количеством и активностью подключенные узлов. Нормально коллизии могут начинаться в определенном временном окне кадра, запоздалые коллизии сигнализируют об аппаратных неполадках в кабеле или узлах. Метод эффективнее, чем CSMA/CA, но требует более сложных и дорогих схем цепей доступа. Применяется во многих сетевых архитектурах: Ethernet, EtherTalk (реализация Ethernet фирмы Apple), G-Net, IBM PC Network, AT&T StarLAN.
Общий недостаток вероятностных методов доступа - неопределенное время прохождения кадра, резко возрастающее при увеличении нагрузки на сеть, что ограничивает его применение в системах реального времени.
При детерминированном (deterministic) методе узлы получают доступ к среде в предопределенном порядке. Последовательность определяется контроллером сети, который может быть централизованным (его функции может выполнять, например, сервер) или/и распределенным (функции выполняются оборудованием всех узлов). Основные типы: доступ с передачей маркера (token passing), применяемый в сетях ARCnet, Token Ring, FDDI; поллинг (polling) - опрос готовности, применяемый в больших машинах (mainframes) и технологии 100VG-AnyLAN. Основное преимущество метода - ограниченное время прохождения кадра, мало зависящее от нагрузки.
Сети с большой нагрузкой требуют более эффективных методов доступа. Один из способов повышения эффективности - перенос управления доступом от узлов в кабельные центры. При этом узел посылает кадр в коммуникационное устройство. Задача этого устройства - обеспечить прохождение кадра к адресату с оптимизацией общей производительности сети и обеспечением уровня качества обслуживания, требуемого конкретным приложением.
1. Сети Ethernet и Fast Ethernet
За время, прошедшее с появления первых локальных сетей, было разработано несколько сотен самых разных сетевых технологий, однако заметное распространение получили всего несколько сетей, что связано, прежде всего, с поддержкой этих сетей известными фирмами и с высоким уровнем стандартизации принципов их организации. Далеко не всегда стандартные сети имеют рекордные характеристики, обеспечивают наиболее оптимальные режимы обмена, но большие объемы выпуска их аппаратуры и, следовательно, ее невысокая стоимость обеспечивают им огромные преимущества. Немаловажно и то, что производители программных средств также в первую очередь ориентируются на самые распространенные сети. Поэтому пользователь, выбирающий стандартные сети, имеет полную гарантию совместимости аппаратуры и программ.
В настоящее время тенденция уменьшения количества типов используемых сетей все усиливается. Дело в том, что увеличение скорости передачи в локальных сетях до 100 и даже до 1000 Мбит/с требует применения самых передовых технологий, проведения серьезных и дорогих научных исследований. Естественно, это могут позволить себе только крупнейшие фирмы, которые, конечно же, поддерживают свои стандартные сети и их более совершенные разновидности.
Наибольшее распространение среди стандартных сетей, получила сеть Ethernet. Впервые она появилась в 1972 году (разработчиком выступила известная фирма Xerox). Сеть оказалась довольно удачной, и вследствие этого ее в 1980 году поддержали такие крупнейшие фирмы, как DEC и Intel (объединение этих фирм, поддерживающих Ethernet, назвали DIX по первым буквам их названий). Стараниями этих фирм в 1985 году сеть Ethernet стала международным стандартом, ее приняли крупнейшие международные организации по стандартам: комитет 802 IEEE (Institute of Electrical and Electronic Engineers) и ЕСМА (European Computer Manufacturers Association).
Стандарт получил название IEEE 802.3. Он определяет множественный доступ к моноканалу типа «шина» с обнаружением конфликтов и контролем передачи, то есть с методом доступа CSMA/CD. Вообще-то надо сказать, что этому стандарту удовлетворяют и некоторые другие сети, так как он не очень сильно детализирован. В результате сети стандарта IEEE 802.3 нередко несовместимы между собой как по конструктивным, так и по электрическим характеристикам.
Основные характеристики стандарта IEEE 802.3 следующие:
# топология - «шина»;
# метод доступа - CSMA/CD, передача узкополосная, то есть без модуляции (моноканал);
# скорость передачи - 10 Мбит/с;
# среда передачи - коаксиальный кабель;
# применение терминаторов - обязательно;
# максимальная длина сегмента сети - до 500 м;
# максимальная длина сети - до 2,5 км;
# максимальное количество компьютеров в сегменте - 100;
# максимальное количество компьютеров в сети - 1024.
В исходной версии Ethernet предусматривалось применение коаксиального кабеля двух видов - «толстого» и «тонкого» (стандарты 10Ваsе-5 и 10Ваse-2, соответственно). Однако в начале 90-х гг. также появились спецификации для построения сетей Ethernet с использованием витой пары (10Base-T) и оптоволокна (10Base-FL). Позже, в 1995 г., был опубликован стандарт архитектуры Fast Ethernet (IEEE 802.3u), обеспечивающей передачу на скоростях до 100 Мбит/с, в 1998 г. стандарт Gigabit Ethernet (IEEE 802.3z и 802.3ab), а в 2002 г. стандарт 10 Gigabit Ethernet (IEEE 802.3ae).
Сравнение различных стандартов Ethernet приведено в табл. 1.
Таблица 1. - Характеристики различных стандартов Ethernet
Реализация |
Скорость передачи данных. Мбит/с |
Топология |
Среда передачи |
Максимальная длина кабеля (м) |
|
Ethernet |
|||||
10Base-5 |
10 |
«шина» |
толстый коаксиальный кабель |
500 |
|
10Base-2 |
10 |
«шина» |
Тонкий коаксиальный кабель |
185; реально - до 300 |
|
10Base-T |
10 |
«звезда» |
витая пара |
100 |
|
10Base-FL |
10 |
«звезда» |
оптоволокно |
500 (станция-концентратор); 2000 (между концентраторами) |
|
Fast Ethernet |
|||||
100Base-TX |
100 |
«звезда» |
витая пара категории 5 (используется две пары) |
100 |
|
100Base- T4 |
100 |
«звезда» |
витая пара категории 3. 4 или 5 (используется четыре пары) |
100 |
|
100Base-FX |
100 |
«звезда» |
многомодовое или одномодовое оптоволокно |
2000 (многомодовый); 15000 (одномодовый); реально - до 40 км |
|
Gigabit Ethernet |
|||||
1000Base-T |
1000 |
«звезда» |
витая пара категории 5 или выше |
100 |
|
1000Base-CX |
1000 |
«звезда» |
специальный кабель типа STP |
25 |
|
1000Base-SX |
1000 |
«звезда» |
оптоволокно |
220-550 (многомодовый), в зависимости от типа |
|
1000Base-LX |
1000 |
«звезда» |
оптоволокно |
550 (многомодовый); 5000 (одномодовый); реально - до 80 км |
|
10 Gigabit Ethernet |
|||||
l0GBase-x (x - набор стандартов) |
10000 |
«звезда» |
оптоволокно |
300 - 40000 (в зависимости от типа кабеля и длины волны лазера) |
Заметим, что в современных версиях Ethernet использование физической топологии «шина» уже не предусмотрено, да и найти сейчас сети, построенные на коаксиальном кабеле, весьма затруднительно.
Основной недостаток сетей Ethernet связан с использованием в них метода доступа к среде CSMA/CD (напомним: это сокращение расшифровывается как «множественный доступ с контролем несущей и обнаружением столкновений»). При увеличении количества компьютеров растет число столкновений, что снижает пропускную способность сети и увеличивает время доставки кадров. Поэтому рекомендуемой нагрузкой для сетей Ethernet считается уровень в 30-40% от общей полосы пропускания. Сразу заметим, что в современных сетях этот недостаток довольно легко устраняется путем замены концентраторов мостами и коммутаторами, способными «изолировать» передачу данных между двумя компьютерами в сети от других.
Сеть Ethernet сейчас наиболее популярна в мире (более 80% рынка). Этому в немалой степени способствовало и то, что с самого начала все характеристики, параметры, протоколы сети были открыты для всех, в результате чего огромное число производителей во всем мире стали выпускать аппаратуру Ethernet, полностью совместимую между собой.
Преимуществ у архитектуры Ethernet довольно много. Прежде всего, сама эта технология довольно проста в реализации. Соответственно, Ethernet-устройства (сетевые адаптеры, концентраторы, коммутаторы и т. д.) оказываются значительно дешевле аналогичных устройств других сетевых архитектур.
В Ethernet можно использовать практические любые виды кабеля, а применение оптоволокна позволяет объединять участки сетей, расположенные далеко друг от друга.
Наконец, совместимость различных вариантов Ethernet очень высока, что позволяет не только наращивать мощности сети с использованием существующей кабельной инфраструктуры, но и легко расширять сеть, подключая к ней новые, более скоростные сегменты. Поэтому сегодня архитектура Ethernet не только стала господствующей в локальных сетях, но и вытесняет другие технологии в региональных и глобальных сетях.
2. Передача информации в сети
2.1 Назначение пакетов и их структура
Информация в локальных сетях, как правило, передается отдельными порциями, кусками, называемыми в различных источниках пакетами, кадрами или блоками. Использование пакетов связано с тем, что в сети, как правило, одновременно может происходить несколько сеансов связи (во всяком случае, при топологиях «шина» и «кольцо»), то есть в течение одного и того же интервала времени могут идти два или больше процессов передачи данных между различными парами абонентов. Пакеты позволяют разделить во времени сеть между передающими информацию абонентами, уравнять в правах всех абонентов, а также примерно уравнять время доступа к сети и интегральную скорость передачи информации для всех абонентов. Длина пакета зависит от типа сети, но обычно она составляет от нескольких десятков байт до нескольких килобайт.
Важно также и то, что при передаче больших массивов информации становится довольно высокой вероятность ошибки из-за помех и сбоев. Например, при характерной для локальных сетей величине вероятности одиночной ошибки в 10~8 пакет длиной 10 Кбит будет искажен с вероятностью 10~4, а массив длиной 10 Мбит - с вероятностью 10~1. К тому же обнаружить ошибку в массиве из нескольких мегабайт намного сложнее, чем в пакете из нескольких килобайт. При обнаружении ошибки придется повторить передачу всего массива, что гораздо сложнее, чем повторно передать небольшой пакет. Но при повторной передаче большого массива снова высока вероятность ошибки, и процесс этот при слишком большом массиве может повторяться до бесконечности.
С другой стороны, пакеты имеют преимущества и перед побайтовой (8 бит) или пословной (16 бит или 32 бита) передачей информации, так как увеличивается полезная загрузка сети за счет уменьшения требуемого количества служебной информации. Это же относится и к маленьким пакетам длиной в несколько байт. Ведь каждый передаваемый по сети пакет обязательно содержит в себе биты, относящиеся непосредственно к обмену по сети (стартовые биты, биты адресации, биты типа и номера пакета и т.д.). При маленьких пакетах доля этой служебной информации будет непозволительно высокой, что приведет к снижению интегральной (средней) скорости обмена информацией между абонентами сети.
Существует некоторая оптимальная длина пакета (или оптимальный диапазон длин пакетов), при которой средняя скорость обмена информацией по сети будет максимальна. Эта длина не является неизменной величиной, она зависит и от уровня помех, и от метода управления обменом, и от количества абонентов сети, и от характера передаваемой информации, и от многих других факторов.
Структура пакета определяется прежде всего аппаратурными особенностями данной сети, выбранной топологией и типом среды передачи информации, а также существенно зависит от используемого протокола (порядка обмена информацией).
Для передачи информации в сети Ethernet применяется стандартный код Манчестер-П. При этом один уровень сигнала нулевой, а другой - отрицательный, то есть постоянная составляющая сигнала не равна нулю. При отсутствии передачи потенциал в сети нулевой. Гальваническая развязка осуществляется аппаратурой адаптеров, репитеров и концентраторов. При этом приемопередатчик сети гальванически развязан от остальной аппаратуры с помощью трансформаторов и изолированного источника питания, а с кабелем сети соединен напрямую.
Доступ к сети Ethernet осуществляется по случайному методу CSMA/CD, обеспечивающему полное равноправие абонентов. В сети используются пакеты переменной длины со структурой, представленной на рис. 2.1. Длина кадра Ethernet (то есть пакета без преамбулы) должна быть не менее 512 битовых интервалов, или 51,2 мкс (именно такова предельная величина двойного времени прохождения в сети). Предусмотрена индивидуальная, групповая и широковещательная адресация.
Рис. 2.1 - Структура пакета сети Ethernet
В пакет Ethernet входят следующие поля:
· Преамбула состоит из 8 байт, первые семь из которых представляют собой код 10101010, а последний восьмой - код 10101011. В стандарте IEEE 802.3 этот последний байт называется признаком начала кадра (SFD - Start of Frame Delimiter) и образует отдельное поле пакета.
· Адрес получателя (приемника) и адрес отправителя (передатчика) включают по 6 байт. Эти адресные поля обрабатываются аппаратурой абонентов.
· Поле управления (L/T - Length/Type) содержит информацию о длине поля данных. Оно может также определять тип используемого протокола. Принято считать, что если значение этого поля не больше 1500, то оно определяет длину поля данных. Если же его значение больше 1500, то оно определяет тип кадра. Поле управления обрабатывается программно.
· Поле данных должно включать в себя от 46 до 1500 байт данных. Если пакет должен содержать менее 46 байт данных, то поле данных дополняется байтами заполнения. Согласно стандарту IEEE 802.3, в структуре пакета выделяется специальное поле заполнения (pad data - незначащие данные), которое может иметь нулевую длину, когда данных достаточно (больше 46 байт).
· Поле контрольной суммы (FCS - Frame Check Sequence) содержит 32-разрядную циклическую контрольную сумму пакета (CRC) и служит для проверки правильности передачи пакета.
Таким образом, минимальная длина кадра (пакета без преамбулы) составляет 64 байта (512 бит). Именно эта величина определяет максимально допустимую двойную задержку распространения сигнала по сети в 512 битовых интервалов (51,2 мкс для Ethernet, 5,12 мкс для Fast Ethernet). Стандарт предполагает, что преамбула может уменьшаться при прохождении пакета через различные сетевые устройства, поэтому она не учитывается. Максимальная длина кадра равна 1518 байтам (12144 бита, то есть 1214,4 мкс для Ethernet, 121,44 мкс для Fast Ethernet). Это важно для выбора размера буферной памяти сетевого оборудования и для оценки общей загруженности сети.
2.2 Адресация пакетов
сеть абонент кабельный коммутатор
Каждый абонент (узел) локальной сети должен иметь свой уникальный адрес (он же идентификатор, МАС-адрес), чтобы ему можно было адресовать пакеты. Существуют две основные системы присвоения адресов абонентам сети (точнее, сетевым адаптерам этих абонентов).
Первая система сводится к тому, что при установке сети каждому абоненту присваивается свой адрес (программно или с помощью переключателей на плате адаптера). При этом требуемое количество разрядов адреса определяется из простого уравнения: 2n > Nmax,
где n - количество разрядов адреса, a Nmax - максимально возможное количество абонентов в сети.
Например, восьми разрядов адреса достаточно для сети из 255 абонентов. Один адрес (обычно 1111....11) отводится для широковещательной передачи, то есть используется для пакетов, адресованных всем абонентам одновременно. Именно этот подход использован в такой известной сети, как Arcnet. Достоинства данного подхода - простота и малый объем служебной информации в пакете, а также простота аппаратуры адаптера, распознающей адрес пакета. Недостаток - трудоемкость задания адресов и возможность ошибки (например, двум абонентам сети может быть присвоен один и тот же адрес).
Второй подход к адресации был разработан международной организацией IEEE, занимающейся стандартизацией сетей. Именно он используется в большинстве сетей и рекомендован для всех новых разработок. Идея состоит в том, чтобы присваивать уникальный сетевой адрес каждому адаптеру сети еще на этапе его изготовления. Если количество возможных адресов будет достаточно большим, то можно быть уверенным, что в любой сети не будет абонентов с одинаковыми адресами. Был выбран 48-битный формат адреса, что соответствует примерно 280 триллионам различных адресов.
Чтобы распределить возможные диапазоны адресов между многочисленными изготовителями сетевых адаптеров, была предложена следующая структура 48-битного стандартного адреса:
· Младшие 24 разряда кода адреса называются OUA (Organizationally Unique Address) - организационно уникальный адрес. Именно их присваивает производитель сетевого адаптера. Всего возможно свыше 16 миллионов комбинаций.
· Следующие 22 разряда кода называются OUI (Organizationally Unique Identifier) - организационно уникальный идентификатор. IEEE присваивает один или несколько ОШ каждому производителю сетевых адаптеров. Это позволяет исключить совпадения адресов адаптеров от разных производителей. Всего возможно свыше 4 миллионов разных OUI. Вместе OUA и OUI называются UAA (Universally Administered Address) - универсально управляемый адрес или IEEE-адрес.
· Два старших разряда адреса являются управляющими и определяют тип адреса, способ интерпретации остальных 46 разрядов. Старший бит I/G (Individual/Group) определяет, индивидуальный это адрес или групповой. Если он установлен в 0, то мы имеем дело с индивидуальным адресом, если установлен в 1, то с групповым (многопунктовым или функциональным) адресом. Пакеты с групповым адресом получают все имеющие его сетевые адаптеры, причем групповой адрес определяется всеми 46 младшими разрядами. Второй управляющий бит U/L (Universal/Local) называется флажком универсального/местного управления и определяет, как был присвоен адрес данному сетевому адаптеру. Обычно он установлен в 0. Установка бита U/L в 1 означает, что адрес задан не производителем сетевого адаптера, а организацией, использующей данную сеть. Это довольно редкая ситуация.
Для широковещательной передачи используется специально выделенный сетевой адрес, все 48 битов которого установлены в единицу. Его принимают все абоненты сети независимо от их индивидуальных и групповых адресов.
Данной системы адресов придерживаются, например, такие популярные сети, как Ethernet, Fast Ethernet, Token-Ring, FDDI, l00VG-AnyLAN. Ее недостатки - высокая сложность аппаратуры сетевых адаптеров, а также большая доля служебной информации в передаваемом пакете (адрес источника и адрес приемника требуют уже 96 битов пакета, или 12 байт).
Во многих сетевых адаптерах предусмотрен так называемый циркулярный режим. В этом режиме адаптер принимает все пакеты, приходящие к нему, независимо от значения поля адреса приемника. Этот режим используется, например, для проведения диагностики сети, измерения ее производительности, контроля за ошибками передачи. В этом случае один компьютер принимает и контролирует все пакеты, проходящие по сети, но сам ничего не передает. В этом же режиме работают сетевые адаптеры мостов и коммутаторы, которые должны обрабатывать перед ретрансляцией все приходящие к ним пакеты.
3. Основы технологии организации кабельных систем сети
Разработанный в 1973 стандарт Ethernet сегодня является наиболее популярным среди стандартов ЛВС. Как технология с разделяемой средой Ethernet обеспечивает скорость передачи 10 мегабит в секунду (Mbps) для всех пользователей, имеющих доступ к среде передачи и протокол разрешения доступа.
По мере расширения сети доступная пользователю полоса (средняя скорость передачи) сужается за счет того, что канал 10 Mbps делится между всеми узлами сети. Повышение производительности компьютеров и использование приложений с интенсивным сетевым трафиком требует расширения полосы для полной реализации возможностей программ и оборудования. Расширение сетей и повышение производительности компьютеров требуют расширения доступной пользователям полосы, обеспечиваемой сетевой средой передачи.
Существует два способа расширения полосы, доступной каждому пользователю. Технология Fast Ethernet базируется на расширении полосы разделяемой среды до 100 Mbps, обеспечивая рост скорости в 10 раз. Другим способ является снижение числа узлов сети, имеющих доступ к разделяемой среде и, следовательно, расширение доступной оставшимся узлам полосы. В предельном случае вся полоса канала передачи может быть предоставлена одному пользователю.
Процесс снижения числа узлов в сети называется сегментацией и осуществляется за счет деления большой сети на несколько меньших. Поскольку пользователям может требоваться доступ к ресурсам других сегментов, нужен механизм обеспечения такого доступа, обеспечивающий межсегментный обмен с достаточно высокой скоростью. Новый тип устройств, называемых коммутаторами Ethernet, обеспечивает требуемые возможности.
3.1 Основы организации сети
Повторители
В начале 80-х годов сети Ethernet организовывались на базе шинной топологии с использованием сегментов на основе коаксиального кабеля длиной до 500 метров. Увеличение размеров сетей поставило задачу преодоления 500-метрового барьера. Для решения этой задачи использовались повторители (repeater):
Повторитель просто копирует (пересылает) все пакеты Ethernet из одного сегмента во все другие, подключенные к нему. Основной задачей повторителя является восстановление электрических сигналов для передачи их в другие сегменты. За счет усиления и восстановления формы электрических сигналов повторителем становится возможным расширение сетей, построенных на основе коаксиального кабеля и увеличение общего числа пользователей сети.
Мосты и маршрутизаторы
При использовании повторителей максимальная протяженность сети составляет 2500 метров. Для преодоления этого ограничения требуются другие устройства, называемые мостами (bridge). Мосты имеют много отличий от повторителей. Повторители передают все пакеты, а мосты только те, которые нужно. Если пакет не нужно передавать в другой сегмент, он фильтруется. Для мостов существуют многочисленные алгоритмы (правила) передачи и фильтрации пакетов минимальным требованием является фильтрация пакетов по адресу получателя.
Другим важным отличием мостов от повторителей является то, что сегменты, подключенные к повторителю образуют одну разделяемую среду, а сегменты, подключенные к каждому порту моста образуют свою среду с полосой 10 Mbps. При использовании моста пользователи одного сегмента разделяют полосу, а пользователи разных сегментов используют независимые Среды. Следовательно, мост обеспечивает преимущества как с точки зрения расширения сети, так и обеспечения большей полосы для каждого пользователя.
Поначалу в сетях Ethernet использовалась шинная топология на основе коаксиального кабеля, а для расширения сетей применялись 2-х портовые повторители или мосты. Однако, в конце 80-х годов началось широкое распространение сетей на основе кабеля со скрученными парами проводников (витая пара). Новая технология 10Base-T стала очень популярной и привела к трансформации топологии сетей от шинной магистрали к организации соединений типа "звезда".
Требования к повторителям и мостам для таких сетей существенно изменились по сравнению с простыми двухпортовыми устройствами для сетей с шинной топологией - современные мосты и повторители представляют собой сложные многопортовые устройства. Мосты позволяют сегментировать сети на меньшие части, в которых общую среду разделяет небольшое число пользователей.
Маршрутизаторы, подобно мостам, также позволяют сегментировать сети Ethernet. маршрутизаторы фильтруют и пересылают сетевой трафик на основе алгоритмов и правил, существенно отличающихся от тех, что используются мостами. Такой способ сегментирования сетей более дорог многопортовые мосты и маршрутизаторы обычно стоят около $1,000 за порт.
Переключение портов
Сегодняшние модульные концентраторы (повторители) часто позволяют организовать несколько сегментов, каждый из которых предоставляет пользователям отдельную разделяемую полосу 10 Mbps. Некоторые концентраторы позволяют программным путем разделять порты устройства на независимые сегменты такая возможность называется переключением портов. Концентратор, к примеру, может содержать три различных сегмента Ethernet, организуемые внутренними средствами хаба. Переключение портов обеспечивает администратору сети высокую гибкость организации сегментов, позволяя переносить порты из одного сегмента в другой программными средствами. Эта возможность особенно полезна для распределения нагрузки между сегментами Ethernet и снижения расходов, связанных с подобными операциями. Переключение портов статическое связывание портов с различными сегментами Ethernet - сильно отличается от коммутации Ethernet.
3.2 Принципы коммутации сегментов и узлов локальных сетей
Технология коммутации сегментов Ethernet была предложена фирмой Kalpana в 1990 году в ответ на растущие потребности в повышении пропускной способности связей высокопроизводительных серверов с сегментами рабочих станций. Эта технология основана на отказе от использования разделяемых линий связи между всеми узлами сегмента и использовании коммутаторов, позволяющих одновременно передавать пакеты между всеми его парами портов.
Функционально многопортовый коммутатор работает как многопортовый мост, то есть работает на канальном уровне, анализирует заголовки кадров, автоматически строит адресную таблицу и на основании этой таблицы перенаправляет кадр в один из своих выходных портов или фильтрует его, удаляя из буфера. Новшество заключалось в параллельной обработке поступающих кадров, в то время как мост обрабатывает кадр за кадром. Коммутатор же обычно имеет несколько внутренних процессоров обработки кадров, каждый из которых может выполнять алгоритм моста. Таким образом, можно считать, что коммутатор - это мультипроцессорный мост, имеющий за счет внутреннего параллелизма высокую производительность.
Структурная схема коммутатора EtherSwitch, предложенного фирмой Kalpana, представлена на рисунке 3.1.
Каждый порт обслуживается одним процессором пакетов Ethernet - EPP (Ethernet Packet Processor). Кроме того, коммутатор имеет системный модуль, который координирует работу всех процессоров EPP. Системный модуль ведет общую адресную таблицу коммутатора и обеспечивает управление коммутатором по протоколу SNMP. Для передачи кадров между портами используется коммутационная матрица, подобная тем, которые работают в телефонных коммутаторах или мультипроцессорных компьютерах, соединяя несколько процессоров с несколькими модулями памяти.
При поступлении кадра в какой-либо порт процессор EPP буферизует несколько первых байт кадра, для того, чтобы прочитать адрес назначения. После получения адреса назначения процессор сразу же принимает решение о передаче пакета, не дожидаясь прихода остальных байт кадра. Для этого он просматривает свой собственный кэш адресной таблицы, а если не находит там нужного адреса, то обращается к системному модулю, который работает в многозадачном режиме, параллельно обслуживая запросы всех процессоров EPP. Системный модуль производит просмотр общей адресной таблицы и возвращает процессору найденную строку, которую тот буферизует в своем кэше для последующего использования.
После нахождения адреса назначения в адресной таблице, процессор EPP знает, что нужно дальше делать с поступающим кадром (во время просмотра адресной таблицы процессор продолжал буферизацию поступающих в порт байт кадра).
Если кадр нужно отфильтровать, то процессор просто прекращает записывать в буфер байты кадра и ждет поступления нового кадра.
Если же кадр нужно передать на другой порт, то процессор обращается к коммутационной матрице и пытается установить в ней путь, связывающий его порт с портом адреса назначения. Коммутационная матрица может это сделать только в том случае, когда порт адреса назначения в этот момент свободен, то есть не соединен с другим портом. Если же порт занят, то кадр полностью буферизуется процессором входного порта, после чего процессор ожидает освобождения выходного порта и образования коммутационной матрицей нужного пути.
После того, как нужный путь установился, в него направляются буферизованные байты кадра, которые принимаются процессором выходного порта, а после получения им доступа к среде передаются в сеть. Процессор входного порта постоянно хранит несколько байт принимаемого кадра в своем буфере, что позволяет ему независимо и асинхронно принимать и передавать байты кадра (рисунок 3.2.).
При свободном, в момент приема кадра, состоянии выходного порта задержка между приемом первого байта кадра коммутатором и появлением этого же байта на выходе порта адреса назначения составляла у коммутатора компании Kalpana всего 40 мкс, что было гораздо меньше задержки кадра при его передаче мостом.
Описанный способ передачи кадра без его полной буферизации получил название коммутации "на лету" ("on-the-fly") или "навылет" ("cut-through"). Этот способ представляет по сути конвейерную обработку кадра, когда частично совмещаются во времени несколько этапов его передачи (рисунок 3.3):
1. Прием первых байт кадра процессором входного порта, включая прием байт адреса назначения.
2. Поиск адреса назначения в адресной таблице коммутатора (в кэше процессора или в общей таблице системного модуля).
3. Коммутация матрицы.
4. Прием остальных байт кадра процессором входного порта.
5. Прием байт кадра (включая первые) процессором выходного порта через коммутационную матрицу.
6. Получение доступа к среде процессором выходного порта.
7. Передача байт кадра процессором выходного порта в сеть.
Этапы 2 и 3 совместить во времени нельзя, так как без знания номера выходного порта операция коммутации матрицы не имеет смысла.
По сравнению с режимом полной буферизации кадра, также приведенном на рисунке, экономия от конвейеризации получается ощутимой.
Однако, главной причиной повышения производительности сети при использовании коммутатора является параллельная обработка нескольких кадров.
Рисунок 3.4 иллюстрирует этот эффект. На рисунке изображена идеальная в отношении повышения производительности ситуация, когда два порта из 4-х, подключенных к коммутатору, передают данные с максимальной для протокола Ethernet скоростью 10 Мб/с, причем они передают эти данные на остальные два порта коммутатора не конфликтуя - у каждого входного порта свой выходной порт. Если коммутатор обладает способностью успевать обрабатывать входной трафик даже при максимальной интенсивности поступления кадров на входные порты, то общая производительность коммутатора в приведенном примере составит 2*(10 Мб/с), а при обобщении примера на N портов - (N/2)*(10 Мб/с). Говорят, что коммутатор предоставляет каждой станции или сегменту, подключенным к его портам, выделенную пропускную способность протокола.
Естественно, что в сети не всегда складывается такая ситуация, которая изображена на рисунке. Если двум станциям, например станциям, подключенным к портам 3 и 4, одновременно нужно записывать данные на один и тот же сервер, подключенный к порту 8, то коммутатор не сможет выделить каждой станции поток данных по 10 Мбит/с, так как порт 8 не может передавать данные со скоростью 20 Мбит/с. Кадры станций будут ожидать во внутренних очередях входных портов 3 и 4, когда освободится порт 8 для передачи очередного кадра. Очевидно, хорошим решением для такого распределения потоков данных было бы подключение сервера к более высокоскоростному порту, например Fast Ethernet.
Так как главное достоинство коммутатора, благодаря которому он завоевал очень хорошие позиции в локальных сетях, это его высокая производительность, то разработчики коммутаторов стараются выпускать так называемые неблокирующие (non-blocking) модели коммутаторов. Неблокирующий коммутатор - это такой коммутатор, который может передавать кадры через свои порты с той же скоростью, с которой они на них поступают. Естественно, что даже неблокирующий коммутатор не может разрешить в течение долгого промежутка времени ситуации, подобные описанной выше, когда блокировка кадров происходит из-за ограниченной скорости выходного порта.
Обычно имеют в виду устойчивый неблокирующий режим работы коммутатора, когда коммутатор передает кадры со скоростью их поступления в течение произвольного промежутка времени. Для обеспечения такого режима нужно, естественно, такое распределение потоков кадров по выходным портам, чтобы они справлялись с нагрузкой и коммутатор мог всегда в среднем передать на выходы столько кадров, сколько их поступило на входы. Если же входной поток кадров (просуммированный по всем портам) в среднем будет превышать выходной поток кадров (также просуммированный по всем портам), то кадры будут накапливаться в буферной памяти коммутатора, а при превышении ее объема - просто отбрасываться. Для обеспечения неблокирующего режима коммутатора необходимо выполнение достаточно простого условия:
Cк = (? Cpi)/2,
где Ck - производительность коммутатора,
Cpi - максимальная производительность протокола, поддерживаемого i-м портом коммутатора.
Суммарная производительность портов учитывает каждый проходящий кадр дважды - как входящий кадр и как выходящий, а так как в устойчивом режиме входной трафик равен выходному, то минимально достаточная производительность коммутатора для поддержки неблокирующего режима равна половине суммарной производительности портов. Если порт работает в полудуплексном режиме, например Ethernet 10 Мбит/с, то производительность порта Cpi равна 10 Мбит/с, а если в полнодуплексном, то его Cpi будет составлять 20 Мбит/с.
Иногда говорят, что коммутатор поддерживает мгновенный неблокирующий режим. Это означает, что он может принимать и обрабатывать кадры от всех своих портов на максимальной скорости протоколов, независимо от того, обеспечиваются ли условия устойчивого равновесия между входным и выходным трафиком. Правда, обработка некоторых кадров при этом может быть неполной - при занятости выходного порта кадр помещается в буфер коммутатора. Для поддержки неблокирующего мгновенного режима коммутатор должен обладать большей собственной производительностью, а именно, она должна быть равна суммарной производительности его портов:
Ck =? Cpi.
Первый коммутатор для локальных сетей не случайно появился для технологии Ethernet. Кроме очевидной причины, связанной с наибольшей популярностью сетей Ethernet, существовала и другая, не менее важная причина - эта технология больше других страдает от повышения времени ожидания доступа к среде при повышении загрузки сегмента. Поэтому сегменты Ethernet в крупных сетях в первую очередь нуждались в средстве разгрузки узких мест сети, и этим средством стали коммутаторы фирмы Kalpana, а затем и других компаний.
Широкому применению коммутаторов безусловно способствовало то обстоятельство, что внедрение технологии коммутации требовало замены только концентраторов или просто добавления коммутаторов для разделения сегментов, образованных с помощью коммутаторов на более мелкие сегменты. Вся огромная установленная база оборудования конечных узлов - сетевых адаптеров, а также кабельной системы, повторителей и концентраторов - оставалась нетронутой, что давало огромную экономию капиталовложений по сравнению с переходом на какую-нибудь совершенно новую технологию, например, АТМ.
Так как коммутаторы, как и мосты, прозрачны для протоколов сетевого уровня, то их появление в сети оставило в неизменном виде не только оборудование и программное обеспечение конечных узлов, но и маршрутизаторы сети, если они там использовались.
Удобство использования коммутатора состоит еще и в том, что это самообучающееся устройство, и, если администратор не нагружает его дополнительными функциями, то конфигурировать его не обязательно - нужно только правильно подключить разъемы кабелей к портам коммутатора, а дальше он будет работать самостоятельно и стараться эффективно выполнять поставленную перед ним задачу повышения производительности.
4. Коммутируемые сети Ethernet
4.1 Коммутированная локальная сеть Ethernet
Сердцем коммутированной локальной сети Ethernet является коммутатор, содержащий высокоскоростную плату, в слоты которой обычно вставляются от 4 до 32 контроллеров линий, в каждом из которых от одного до восьми разъемов. Чаще всего к разъему подключается витая пара 10Base-T, соединяющая коммутатор с единственным хостом (рис. 4.1.).
Когда станция передаёт кадр Ethernet, она посылает стандартный кадр в коммутатор. Плата в коммутаторе, получив кадр, проверяет, не адресован ли этот кадр станции, подсоединенной к той же плате. Если да, то кадр пересылается ей. В противном случае кадр пересылается по объединительной плате карте, к которой подключена станция-получатель. Объединительная плата обычно работает на скорости в несколько гигабит в секунду с использованием собственного протокола.
При одновременной передаче кадров несколькими машинами, присоединенными к одной и той же карте коммутатора, результат зависит от конструкции карты. Одним из вариантов может быть объединение всех портов карты вместе с образованием на карте небольшой локальной сети. Столкновения в такой сети обнаруживаются и обрабатываются так же, как и в любой другой сети CSMA/CD - при помощи повторных передач кадров с использованием алгоритма двоичного экспоненциального отката. При использовании такого типа карт в каждый момент времени возможна передача только одной станции из подключенных к карте, но все карты могут передавать или принимать данные параллельно. При такой схеме коммутатора каждая карта образует свое пространство столкновений, независимое от других. Наличие только одной станции в пространстве столкновений исключает собственно столкновения и повышает производительность.
Возможна также и другая разновидность карт - с буферизацией данных, приходящих на каждый вход, в оперативной памяти карты. При этом все входные порты могут передавать и принимать кадры одновременно в дуплексном режиме, что далеко не всегда удается реализовать в моноканале с применением CSMA/CD. После приема кадра карта может проверить, кому он предназначается. Если адресатом является какой-то из портов текущей карты, то кадр сразу же туда и направляется. Если же нужно передать данные на порт другой карты, то это делается с помощью объединительной платы. При этом каждый порт обладает отдельным пространством коллизий, поэтому столкновения не возникают.
Общая производительность системы может быть повышена на порядок по сравнению с 10Base5, поскольку в последней используется единое пространство столкновений. Так как коммутатор ожидает на каждом входном порту кадры Ethernet, можно использовать некоторые из этих портов в качестве концентраторов. На рис. 4.1 порт в правом верхнем углу соединен не с одной станцией, а с 12-портовым концентратором. Прибывая в концентратор, кадры состязаются самым обычным образом, включая столкновения и двоичный откат. Удачливые кадры попадают в коммутатор и подвергаются там той же процедуре, что и все остальные кадры, то есть перенаправляются на нужные выходные линии через высокоскоростную объединяющую плату. Концентраторы дешевле коммутаторов, однако их быстрое удешевление означает лишь намечающуюся тенденцию к устареванию. Тем не менее, все еще существуют действующие концентраторы.
4.2 Атрибуты коммутаторов Ethernet
Коммутаторы Ethernet подобно мостам и маршрутизаторам способны сегментировать сети Ethernet. Как и многопортовые мосты коммутаторы передают пакеты между портами на основе адреса получателя, включенного в каждый пакет. реализация коммутаторов обычно отличается от мостов в части возможности организации одновременных соединений между любыми парами портов устройства - это значительно расширяет суммарную пропускную способность сети. Более того, мосты в соответствии со стандартом IEEE 802.1d должны получить пакет целиком до того, как он будет передан адресату, а коммутаторы могут начать передачу пакета, не приняв его полностью.
Виртуальные соединения
Коммутатор Ethernet поддерживает внутреннюю таблицу, связывающую порты с адресами подключенных к ним устройств (таблица 2). Эту таблицу администратор сети может создать самостоятельно или задать ее автоматическое создание средствами коммутатора.
Таблица 2
MAC-адрес |
Номер порта |
|
A |
1 |
|
B |
2 |
|
C |
3 |
|
D |
4 |
Используя таблицу адресов и содержащийся в пакете адрес получателя, коммутатор организует виртуальное соединение порта отправителя с портом получателя и передает пакет через это соединение. На рисунке 4.1 узел А посылает пакет узлу D. Найдя адрес получателя в своей внутренней таблице, коммутатор передает пакет в порт 4.
Виртуальное соединение между портами коммутатора сохраняется в течение передачи одного пакета, т.е. для каждого пакета виртуальное соединение организуется заново на основе содержащегося в этом пакете адреса получателя.
Поскольку пакет передается только в тот порт, к которому подключен адресат, остальные пользователи (в нашем примере - B и C) не получат этот пакет. Таким образом, коммутаторы обеспечивают средства безопасности, недоступные для стандартных повторителей Ethernet (см. раздел "Сравнение сетевых устройств").
Одновременные соединения
В коммутаторах Ethernet передача данных между любыми парами портов происходит независимо и, следовательно, для каждого виртуального соединения выделяется вся полоса канала. Например, коммутатор 10 Mbps на рисунке 4.2 обеспечивает одновременную передачу пакета из A в D и из порта B в порт C с полосой 10 Mbps для каждого соединения.
Поскольку для каждого соединения предоставляется полоса Mbps, суммарная пропускная способность коммутатора в приведенном примере составляет 20 Mbps. Если данные передаются между большим числом пар портов, интегральная полоса соответственно расширяется. Например, 24 портовый коммутатор Ethernet может обеспечивать интегральную пропускную способность до 120 Mbps при одновременной организации 12 соединений с полосой 10 Mbps для каждого из них. теоретически, интегральная полоса коммутатора растет пропорционально числу портов. Однако, в реальности скорость пересылки пакетов, измеренная в Mbps, меньше чем суммарная полоса пар портов за счет так называемой внутренней блокировки. Для коммутаторов высокого класса блокировка весьма незначительно снижает интегральную полосу устройства.
Подобные документы
Характеристика существующей сети города Павлодар. Расчет нагрузки от абонентов сети Metro Ethernet, логическая схема включения компонентов решения Cisco Systems. Сопряжение шлюзов выбора услуг с городскими сетями передачи данных, подключение клиентов.
дипломная работа [6,8 M], добавлен 05.05.2011Изучение протоколов технологии Ethernet, история их появления. Анализ сетей, в которых она используется. Использование двухканальных подуровней. Основные характеристики Ethernet. Аббревиатура международных стандартов ИСО на основе стандартов IEEE.
контрольная работа [127,7 K], добавлен 16.12.2015Локальная сеть как группа персональных компьютеров (периферийных устройств), которые объединены между собой высокоскоростным каналом передачи цифровых данных в пределах близлежащих зданий. Сети Ethernet: формирование, история разработки. Сетевые кабели.
курсовая работа [350,9 K], добавлен 04.12.2012Виды сетей передачи данных. Типы территориальной распространенности, функционального взаимодействия и сетевой топологии. Принципы использования оборудования сети. Коммутация каналов, пакетов, сообщений и ячеек. Коммутируемые и некоммутируемые сети.
курсовая работа [271,5 K], добавлен 30.07.2015История возникновения сети Token-Ring как альтернативы Ethernet. Топология сети, соединение абонентов, концентратор Token-Ring. Основные технические характеристики сети. Формат пакета (кадра) сети. Назначение полей пакета. Маркерный метод доступа.
презентация [1,9 M], добавлен 20.06.2014Устройства записи и хранения информации. Преимущества сетевых систем цифрового видеонаблюдения перед аналоговыми. Устройства, необходимые для работы компьютерной сети. Программные платформы систем видеонаблюдения. Сетевые устройства хранения NAS.
курсовая работа [2,6 M], добавлен 30.01.2016Низкая скорость передачи данных - один из основных недостатков систем мобильной связи второго поколения. Пейджинг - технология поиска абонентов в сети при поступлении входящего соединения. Основные технические характеристики сетевого маршрутизатора.
дипломная работа [1,9 M], добавлен 17.06.2017Алгоритмы сети Ethernet/Fast Ethernet: метод управления обменом доступа; вычисления циклической контрольной суммы (помехоустойчивого циклического кода) пакета. Транспортный протокол сетевого уровня, ориентированный на поток. Протокол управления передачей.
контрольная работа [149,6 K], добавлен 14.01.2013Широкополосный доступ в Интернет. Технологии мультисервисных сетей. Общие принципы построения домовой сети Ethernet. Моделирование сети в пакете Cisco Packet Tracer. Идентификация пользователя по mac-адресу на уровне доступа, безопасность коммутаторов.
дипломная работа [4,5 M], добавлен 26.02.2013Технологии построения локальных проводных сетей Ethernet и беспроводного сегмента Wi-Fi. Принципы разработки интегрированной сети, возможность соединения станций. Анализ представленного на рынке оборудования и выбор устройств, отвечающих требованиям.
дипломная работа [6,6 M], добавлен 16.06.2011