Кодовый замок
Введение в проблематику и методику проектирования автоматов с памятью. Практическое применение асинхронных автоматов. Абстрактный и структурный синтез автомата. Набор элементов для физического синтеза. Проектирование самосинхронизирующихся устройств.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 04.08.2010 |
Размер файла | 115,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Тема
Кодовый замок
Задание
Спроектировать автомат «кодовый замок», имеющий три информационных входа A, B, C, на которые подается входной сигнал в восьмеричном коде, и два выхода Z1, Z2.
Z1 - возбуждается при подаче, на (A, B, C) входы, заданной последовательности сигналов.
Z2 - возбуждается при нарушении заданной последовательности сигналов.
В качестве элементной базы рекомендуется использовать RS и JK триггеры и интегральные микросхемы с набором логических элементов.
После получения функциональной схемы следует провести анализ на возможные ложные комбинации и состязания в автомате.
Для варианта № 6 принять следующую последовательность входных сигналов:
0 - 1 - 5 - 4 - 5
7 - 5 - 7 - 3 - 7
1 - 0 - 4 - 5 - 4
- 4 - 0 - 1 - 0
Введение в проблематику и методику проектирования автоматов с памятью
Узлы и устройства, которые содержат элементы памяти, относятся к классу автоматов с памятью (АП). Наличие элементов памяти (ЭП) придает АП свойство иметь некоторое внутреннее состояние Q, определяемое совокупностью состояний всех элементов памяти. В зависимости от внутреннего состояния (далее называемого просто состоянием), АП различно реагирует на один и тот же вектор входных сигналов X. Воспринимая входные сигналы при определенном состоянии, АП переходит в новое состояние и вырабатывает вектор выходных переменных Y. Таким образом, для АП QH = f(Q, X) и Y = ц(Q, X), где QH и Q -- состояния АП после и до подачи входных сигналов (индекс "н" от слова "новое").
Переходы АП из одного состояния в другое начинаются с некоторого исходного состояния Q0, задание которого также является частью задания автомата. Следующее состояние зависит от Q0 и поступивших входных сигналов X. В конечном счете, текущее состояние и выходы автомата зависят от начального состояния и всех векторов X, поступавших на автомат в предшествующих сменах входных сигналов. Таким образом, вся последовательность входных сигналов определяет последовательность состояний и выходных сигналов. Это объясняет название «последователъностные схемы», также применяемое для обозначения АП.
Структурно АП отличаются от КЦ наличием в их схемах обратных связей, вследствие чего в них проявляются свойства запоминания состояний (полезно вспомнить схемы триггерных элементов, где указанная особенность проявляется очень наглядно).
Автоматы с памятью в каноническом представлении разделяют на две части: память и комбинационную цепь. На входы КЦ подаются входные сигналы и сигналы состояния АП. На ее выходе вырабатываются выходные сигналы и сигналы перевода АП в новое состояние.
Принципиальным является деление АП на асинхронные и синхронные. В асинхронных (рис. 1, а) роль элементов памяти играют элементы задержки, через которые сигналы состояния передаются на входы КЦ, чтобы совместно с новым набором входных переменных определить следующую пару значений Y и Q на выходе. Элементы АП переключаются здесь под непосредственным воздействием изменений информационных сигналов. Скорость распространения процесса переключений в цепях асинхронного автомата определяется собственными задержками элементов.
В синхронном АП (рис. 1, б) имеются специальные синхросигналы (тактирующие импульсы) С, которые разрешают элементам памяти прием данных только в определенные моменты времени. Элементами памяти служат синхронные триггеры. Процесс обработки информации упорядочивается во времени, и в течение одного такта возможно распространение процесса переключения только в строго определенных пределах тракта обработки информации.
Рис. 1. Асинхронный (а) и синхронный (б) автоматы с памятью
Практическое применение асинхронных автоматов существенно затруднено сильным влиянием на их работу задержек сигналов в цепях АП, создающих статические и динамические риски, гонки элементов памяти (неодновременность срабатывания ЭП даже при одновременной подаче на них входных сигналов) и др. В итоге характерным свойством асинхронного автомата является то, что при переходе из одного устойчивого состояния в другое он обычно проходит через промежуточные нестабильные состояния. Нельзя сказать, что методы борьбы с нежелательными последствиями рисков и гонок в асинхронных АП отсутствуют, но все же обеспечение предсказуемого поведения АП -- сложная проблема. В более или менее сложных АП асинхронные схемы встречаются очень редко, а в простейших схемах применяются. Примером могут служить асинхронные RS-триггеры.
В синхронных автоматах каждое состояние устойчиво и переходные временные состояния не возникают. Концепция борьбы с последствиями рисков и гонок в синхронных автоматах проста -- прием информации в элементы памяти разрешается только после завершения в схеме переходных процессов. Это обеспечивается параметрами синхроимпульсов, задающих интервалы времени для завершения тех или иных процессов. В сравнении с асинхронными, синхронные АП значительно проще в проектировании.
На сегодняшний день и достаточно длительную перспективу основным путем построения АП следует считать применение тактирования, т. е. синхронных автоматов.
В работах отечественных и зарубежных ученых разрабатывается направление, называемое проектированием самосинхронизирующихся устройств, в которых тактовые импульсы следуют с переменной частотой, зависящей от длительности реального переходного процесса в схеме. Однако перспективность этого направления еще не вполне ясна.
В теории автоматов проводится их классификация по ряду признаков. Не вдаваясь в подробности, отметим, что в схемотехнике преобладают автоматы Мура, выходы которых являются функциями только состояния автомата. Для этого автомата QH = f(Q, X) и Y = ц(Q).
Зависимость выходов и от состояния автомата и от вектора входных переменных свойственна автоматам Мили.
Некоторые функциональные узлы принадлежат к числу автономных автоматов, которые не имеют информационных входов, и под действием тактовых сигналов переходят из состояния в состояние по алгоритму, определяемому структурой автомата.
В нашем случае, для формирования последовательности выходных сигналов Y = {Z1, Z2} при соответствующей последовательности входных сигналов (A, B, C)i, можно использовать автомат с жесткой логикой и законом функционирования автомата Мили:
Qt+1 = f(Qt, ABCt);
Yt = ц(Qt, ABCt),
где: Q = {Q1, Q2, Q3, Qn} - множество состояний автомата; t = 0, 1, 2, 3, 4
Абстрактный синтез автомата
(1.1)
Интерфейс автомата (рис. 2).
Алфавит состояний автомата
D4 |
D3 |
D2 |
D1 |
D0 |
||
Q0 |
0 |
0 |
0 |
0 |
0 |
|
Q1 |
0 |
0 |
0 |
0 |
1 |
|
Q2 |
0 |
0 |
0 |
1 |
0 |
|
Q3 |
0 |
0 |
0 |
1 |
1 |
|
Q4 |
0 |
0 |
1 |
0 |
0 |
|
Q5 |
0 |
0 |
1 |
0 |
1 |
|
Q6 |
0 |
0 |
1 |
1 |
0 |
|
Q7 |
0 |
0 |
1 |
1 |
1 |
|
Q8 |
0 |
1 |
0 |
0 |
0 |
|
Q9 |
0 |
1 |
0 |
0 |
1 |
|
Q10 |
0 |
1 |
0 |
1 |
0 |
|
Q11 |
0 |
1 |
0 |
1 |
1 |
|
Q12 |
0 |
1 |
1 |
0 |
0 |
|
Q13 |
0 |
1 |
1 |
0 |
1 |
|
Q14 |
0 |
1 |
1 |
1 |
0 |
|
Q15 |
0 |
1 |
1 |
1 |
1 |
|
Q16 |
1 |
0 |
0 |
0 |
0 |
В соответствии с заданием и алфавитом состояний строим граф переходов
В соответствии с графом переходов и таблицей состояний строим таблицу переходов
Q |
C |
B |
A |
(CBA) |
Z1 |
Z2 |
Qн |
|||||||||||
D4 |
D3 |
D2 |
D1 |
D0 |
D4 |
D3 |
D2 |
D1 |
D0 |
|||||||||
Q0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
Q1 |
|
Q0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
7 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
Q5 |
|
Q0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
Q9 |
|
Q0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
5 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
Q13 |
|
Q1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
Q2 |
|
Q2 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
5 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
Q3 |
|
Q3 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
4 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
Q4 |
|
Q4 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
5 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
Q0/Z1 |
|
Q5 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
5 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
Q6 |
|
Q6 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
7 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
Q7 |
|
Q7 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
3 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
Q8 |
|
Q8 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
7 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
Q0/Z1 |
|
Q9 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
Q10 |
|
Q10 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
4 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
Q11 |
|
Q11 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
5 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
Q12 |
|
Q12 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
4 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
Q0/Z1 |
|
Q13 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
4 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
Q14 |
|
Q14 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
Q15 |
|
Q15 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
Q16 |
|
Q16 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
Q0/Z1 |
Чтобы не загромождать таблицу переходами в состояние Q0/Z2, условимся, что при всех остальных комбинациях Q и CBA, не описанных в таблице, переход будет осуществляться так:
Q |
C |
B |
A |
(CBA) |
Z1 |
Z2 |
Qн |
|||||||||||
D4 |
D3 |
D2 |
D1 |
D0 |
D4 |
D3 |
D2 |
D1 |
D0 |
|||||||||
Qx |
x |
x |
x |
x |
x |
все другие комбинации |
x |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
Q0/Z2 |
Далее можно было бы выводить функции переходов, минимизировать, упрощать, опять минимизировать… Но есть способ лучше - прошить все эти функции “как есть” в ПЗУ, а в качестве элементов памяти использовать параллельный регистр с двухступенчатыми D-триггерами. При этом состояние Q и сигналы CBA будут являться адресом ПЗУ, а Z1, Z2 и Qн - данными, которые необходимо записать по этому адресу. Во все же остальные адреса необходимо записать 01000000.
Структурный синтез автомата
2.1) Использование всех наборов исключает присутствие ложных комбинаций в функциональной схеме.
2.2) Введение дополнительного синхронизирующего провода в интерфейс автомата (рис № 2) позволяет использовать тактируемый регистр с двухступенчатыми триггерами, которые, в свою очередь, предотвращают возможные гонки в автомате.
2.3) На странице № 7 реализуем функциональную схему.
Набор элементов для физического синтеза
В качестве элементной базы можно использовать регистры с разрядностью ? 7 и асинхронным сбросом, ПЗУ с разрядностью адресов ? 8 и разрядностью данных ? 7, например, соответственно, 74LS199 и 573РФ2.
Остается добавить, что работоспособность автомата была проверена в системе проектирования электронных схем CircuitMaker Pro 6.0
Литература
Е. Угрюмов «Цифровая схемотехника», BHV 2000
Схема автомата
Цепочка R1C1 обеспечивает сброс регистра и приведение автомата в исходное состояние при включении питания.
Подобные документы
Принципы организации управляющих автоматов. Разработка и проектирование автомата с жесткой и программируемой логикой. Разработка таблицы прошивки ПЗУ для УА с естественной адресацией микрокоманд. Структурный и абстрактный синтез управляющего автомата.
курсовая работа [508,5 K], добавлен 16.03.2011Знакомство с табличными и графическими способами задания многофункциональных абстрактных детерминированных автоматов. Рассмотрение сфер использования абстрактных автоматов с памятью. Анализ особенностей многофункциональных автоматов Мараховского.
контрольная работа [787,5 K], добавлен 28.03.2018Проектирование цифровых автоматов Мили и Мура с памятью в булевом базисе по заданной ГСА. Составление частично структурированной таблицы переходов-выходов. Построение функций выходов, логической схемы автомата. Особенности его экспериментальной проверки.
курсовая работа [628,7 K], добавлен 14.07.2012Проектирование конечного автомата, заданного оператором соответствия, с использованием канонического метода структурного синтеза автоматов. Тактирование от генератора синхронизирующих импульсов для устранения гонок в функциональной схеме автомата Мили.
курсовая работа [1,6 M], добавлен 22.10.2012Основные понятия теории клеточных автоматов, анализ программных и аппаратных реализаций. Разработка методов синтеза и логического проектирования модулей сигнатурного мониторинга. Программа моделирования сетей клеточных автоматов на языке Delphi.
дипломная работа [1,9 M], добавлен 06.06.2011Изучение истории развития теории конечных автоматов. Методы логического проектирования дискретных устройств. Алфавитный способ преобразования информации. Кодирование информации в двоичном алфавите. Многофункциональные автоматы Мараховского с памятью.
контрольная работа [103,6 K], добавлен 28.03.2018Управляющий цифрового автомат типа Мура. Абстрактный и структурный синтез автомата, построена функциональная схема. Функции выходов и возбуждения элементов памяти. Моделирование на ПК с использованием симулятора ModelSim. Описание автомата на языке VHD.
курсовая работа [214,2 K], добавлен 07.11.2010Схема строения цифровых автоматов, применяемых в цифровой технике. Отличия синхронных и асинхронных последовательностных устройств. Логические уравнения для определения работы автомата Мура. Синхронные триггеры и синтез последовательностного устройства.
реферат [163,6 K], добавлен 24.12.2010Синтез цифровых схем, выбор элементной базы и анализ принципов построения управляющих автоматов с жесткой логикой. Граф-схемы алгоритмов умножения и деления чисел. Создание управляющего автомата типа Мили; выбор триггера, кодирование сигналов автомата.
курсовая работа [1,8 M], добавлен 18.09.2012Синтез дискретного устройства, его структурная схема. Расчет дешифратора и индикаторов, их проектирование. Карты Карно. Синтез счетной схемы. Делитель частоты. Проектирование конечного автомата и его описание. Анализ сигналов и минимизация автомата.
курсовая работа [217,8 K], добавлен 21.02.2009