Принцип действия волоконно-оптического гироскопа

Принцип взаимности и регистрация фазы в волоконно-оптическом гироскопе. Характеристики источников излучения и фотодетекторов. Особенности прямых динамических эффектов. Методы компенсации погрешностей. Расчет сметной калькуляции научного исследования.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 24.05.2010
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В схеме интерферометрического волоконно-оптического гироскопа кроме контурного направленного ответвителя 1 используется еще один направленный ответвитель 4, с помощью которого и осуществляется включение в чувствительный контур 2 волоконно-оптического гироскопа одного или двух фазовых модуляторов отражательного типа.

При использовании в интерферометрическом волоконно-оптическом гироскопе двух фазовых модуляторов частоты модуляции и законы изменения фазы в модуляторах могут быть как одинаковыми, так и различными. Оптические длины путей с заходами в модуляторы 3 и 3 могут быть либо одинаковыми, либо отличаться на величину, существенно превышающую длину когерентности источника излучения. Это открывает дополнительные возможности в обработке сигнала интерферометрического волоконно-оптического гироскопа и его конструктивных решений.

Очевидно, что в интерферометрическом волоконно-оптическом гироскопе не обязательно устанавливать два фазовых модулятора.

При установке только одного фазового модулятора свободный выход направленного ответвителя 4 может быть использован для других целей. Для исключения влияния отраженного сигнала источник излучения должен подключаться к оптическому тракту волоконно-оптического гироскопа через оптический изолятор (на рисунках не показан). При использовании в фазовом модуляторе модового конвертора второго типа вместо (3.2) будем иметь:

(3.3)

Здесь = (t) (i, j = 1 , 2) - элементы матрицы N(t ), введенной выше. Из (3) следует, что, в отличие от предыдущего случая, паразитная поляризационная модуляция при произвольной матрице N(t) не устраняется.

Предположим, однако, что элементы N(t ) удовлетворяют соотношениям . Тогда вместо (3.2) имеем

M2(t ) = [ per N (t) ] K2 (3.4)

где per N (t ) = n11 n22 + n12 n21 - перманент матрицы N(t ).

Таким образом, если равенства (3.4) имеют место, то и в модуляторе с модовым конвертором второго типа паразитная поляризационная модуляции будет устраняться.

Рассмотрим один частный случай. Предположим, что модулирующий отрезок волокна или интегрально-оптического волновода представляет собой линейную фазовую пластинку с азимутом быстрой оси, равным 0. Тогда n12 = n21 = 0, так что паразитная поляризационная модуляция будет скомпенсирована.

Одна из возможных реализаций отражательного фазового модулятора с модовым конвертором второго типа представляет собой последовательное включение линейной фазовой пластинки с изменяющейся во времени фазовой задержкой и азимутом быстрой оси 0 , четвертьволновой фазовой пластинки с азимутом быстрой оси 45 и зеркала. Включение такого фазового модулятора в схему интерферометрического волоконно-оптического гироскопа может быть осуществлено так же, как и в предыдущем случае.

3.2 Компенсация избыточного шума в волоконно-оптическом гироскопе с ответвителем типа 33

Один из путей повышения точности волоконно-оптических гироскопов связан с использованием в них суперфлуоресцентных волоконных источников излучения. Такие источники близки по свойствам к тепловым и характеризуются высоким уровнем избыточного шума. Эксперименты показывают, что избыточный шум доминирует над другими шумами уже при мощностях на фотодетекторе порядка 10 mW . Поэтому проблема уменьшения его влияния на точность гироскопов представляет большой интерес.

В когерентно-оптической связи для подавления избыточного шума гетеродина используется балансное детектирование. Балансное детектирование можно применить и в волоконно-оптических гироскопах, используя в качестве опорного сигнала излучение источника, задержанное на время прохождения света по оптическому тракту волоконно-оптических гироскопов.

Однако реализация балансного детектирования в обычной ”минимальной” схеме волоконно-оптических гироскопов с входным и контурным ответвителями типа 22 сопряжена с рядом трудностей, связанных с обеспечением когерентного взаимодействия информативного и опорного сигналов. Эта проблема решается значительно проще при использовании в схеме волоконно-оптического гироскопа направленного ответвителя типа 3 3.

Рис 3.2. Схема волоконно-оптического гироскопа с ответвителем типа 33.

На рис.3.2. представлена простейшая схема волоконно-оптического гироскопа с ответвителем типа 3 3. Излучение от источника (3) поступает через направленный ответвитель типа 3 3 (4) на входы чувствительного контура (5), а затем - на фотодетекторы (1) и (2), выходы которых подключены к дифференциальному усилителю (6). Каждая из встречных волн L и S в схеме (см. рисунок) является и информативной (сигнальной) и одновременно -- опорной для другой волны, причем с точностью до множителя, в случае идеального направленного ответвителя имеем:

(3.5)

(3.6)

Здесь A и - соответственно амплитуда и фаза волн, а 0-невзаимный (саньяковский) фазовый сдвиг. Сигналы, поступающие на фотодетекторы:

(3.7)

(3.8)

где 1 - разность фаз сигналов, прошедших через направленный ответвитель по ”прямому” и ”перекрестному” каналам.

Токи фотодетекторов (которые считаются идентичными):

(3.9)

где n1 и n2 - шумы фотодетектирования.

На выходе дифференциального усилителя

(3.10)

Таким образом, избыточный шум, обусловленный фоновой засветкой фотодетекторов, оказывается скомпенсированным. Из (3.9-3.10) следует также, что волоконно-оптический гироскоп с контурным направленным ответвителем типа 33 и балансным детектированием работает в квадратурном режиме, его оптический масштабный коэффициент такой же, как и в ”минимальной” схеме, однако электрический масштабный коэффициент меньше, поскольку 1 /2.

Рассмотренная схема представляет интерес для волоконно-оптического гироскопа грубого и среднего классов точности. Для волоконно-оптических гироскопов высокой точности можно использовать модифицированную ”минимальную” схему с направленным ответвителем типа 33. В этом случае в оба канала включаются дополнительные элементы 7, 8, обеспечивающие возможность повышения точности устройства за счет снижения уровня поляризационных шумов, устранения паразитной модуляции и других неблагоприятных факторов, рассмотренных в дипломной работе.

3.3 Компенсация обратного рэлеевского рассеяния

Обратное рэлеевское рассеяние (основной механизм потерь в волокне с низкими потерями) является важным фактором, который может существенно снижать чувствительность ВОГ.

Сущность этого эффекта состоит в том, что каждая первичная волна, противоположно распространяющаяся в световодном контуре, возбуждает маломасштабные неоднородности в волокне, которые в свою очередь действуют как индуцированные дипольные излучатели. Световод «захватывает» часть рассеянного излучения и канализирует его в обратном направлении.

Рис 3.3. Обратнорассеянные волны в контуре ВОГ (схема).

Вклады от каждого элементарного рассеивателя суммируются векторно и образуют полное рассеянное поле в каждом направлении. Если контур не возмущен, то амплитуда и фаза поля стабильны во времени. Поскольку элементарные рассеиватели распределены случайно вдоль волокна, можно оценить лишь среднеквадратическое значение амплитуды каждой обратнорассеянной волны относительно полной обратнорассеянной мощности.

Предсказать фазу каждой волны весьма затруднительно. Обратнорассеянные волны обладают некоторой степенью когерентности относительно двух первичных волн и поэтому суммируются с первичными волнами также векторно со случайными фазами. Фазы результирующих двух волн в общем случае из-за влияния окружающих условий не идентичны (рис. 3.3.).

Следовательно, на выходе волоконного контура появляется составляющая фазового сдвига, обусловленная обратным рэлеевским рассеянием, и при любом одиночном измерении неразличимая от фазы, индуцированной вращением контура (фазы Саньяка), т. е. появляется ошибка в измерении угловой скорости вращения контура.

Рис 3.4. Обратнорассеянные волны в контуре ВОГ (векторная диаграмма).

Интерес представляет оценка ошибки ВОГ, обусловленной обратным рэлеевским рассеянием. Оценить неопределенность измерения фазы Саньяка и соответственно ошибку в измерении угловой скорости, обусловленной обратным рэлеевским рассеянием, можно по упрощенной методике, предложенной в работе [4].

Полагаем, что затухание излучения в волокне обусловлено рэлеевским рассеянием ( коэффициент ослабления, L - длина контура). При этом теряемая энергия равномерно рассеивается по длине волокна с коэффициентом направленного рассеяния G вдоль волокна (1 < G < 1,5). Для равномерно рассеянного излучения приближенно справедлив закон Ламберта.

Учитывая эти условия, можно получить отношение мощности части от полного рассеянного излучения, «перехватываемой» волоконным сердечником, и появляющегося на выходе контура, к мощности первичной волны на выходе контура ( векторная диаграмма на рис. 3.3.):

(3.11)

В соотношении (3.11) PS - мощность обратнорассеянной (вторичной) волны на выходе контура, P1 - мощность первичной (сигнальной) волны после одного прохождения в контуре, P0 - мощность излучения на входе одного плеча контура, - телесный угол ввода излучения волоконного сердечника ( - линейный угол).

Величину можно разложить в ряд Маклорена, и при малом ограничиться двумя первыми членами разложения. Тогда получим

(3.12)

Как следует из векторной диаграммы (рис. 3.4.), при комбинации двух пар противоположно распространяющихся в контуре волн максимальное приращение фазы, обусловленное эффектом обратного рассеяния, можно выразить в виде

(3.13)

Это значение фазы, полученное при одиночном измерении, приводит к ошибке в измерении угловой скорости вращения. Для определения угловой скорости вращения, соответствующей этому значению фазы (эквивалентной ошибке измерения угловой скорости), используем ранее полученную формулу Саньяка:

(3.14)

Имеем

(3.15)

где N - число витков контура; D - диаметр витка.

Подставляя N=L / D в это выражение, имеем

(3.16)

Для получения численной оценки используем следующие значения параметров:

= 1 мкм,

N = 318,

D = 1 м,

= 0.1 рад,

G = 1,

L = 1000 м .

Подставляя эти значения, получаем максимальную фазовую ошибку при одном обходе контура рад, которая линейно преобразуется в ошибку измерения угловой скорости = 341 град/ч ( 0.095 град/с). Полученный результат свидетельствует о значительности ошибки и приводит к выводу о необходимости применения специальных мер или использования устройств, минимизирующих ошибку, обусловленную обратным рэлеевским рассеянием.

Способы минимизации ошибки ВОГ, обусловленной обратным рэлеевским рассеянием могут быть связаны с уменьшением взаимной когерентности между первичной и вторичной (рассеянной) волной. При этом, однако, ряд способов, уменьшающих когерентность, одновременно уменьшают взаимность между двумя первичными волнами, что весьма нежелательно. Но такие способы, как частотная модуляция первичного сигнала или физическая модуляция длины контура (контролируемым образом), уменьшая когерентность, не вносят дополнительной невзаимности в контур.

Если эффективность модуляции достаточно высока, т. е. если в отсчетный интервал времени число длин волн, укладывающихся на длине контура, изменяется значительно, то вторичная (рассеянная) волна суммируется с появляющейся первичной волной со случайной фазой. Если измерение осуществляется с частотой q в единицу времени и если фаза вторичной волны изменяется случайно между отсчетами, то неопределенность углового положения контура по истечении данного интервала времени определяется процессом «случайного блуждания» и дается выражением :

(3.17)

Для приведенных выше численных значений контура ВОГ, приняв q = 10 отсч./с. и интегрируя в течение часа, получается ошибка (экстраполированный дрейф) 1,27 град/ч1/2.

Следует отметить, что в существующих ВОГ ошибка, обусловленная обратным рассеянием, уменьшается за счет некоторых неизбежно присутствующих факторов, еще недостаточно изученных, но уменьшающих степень когерентности между первичной и вторичной волнами .

Например, во многих системах ВОГ используется модуляция излучения, которая может рандомизировать до некоторой степени фазу рассеяной волны, хотя эта модуляция может использоваться в ВОГ для совершенно других целей (к примеру для удобства регистрации сигнала). Некоторая степень рандомизации фазы неизбежно имеет место вследствие механических и тепловых воздействий на волоконный контур; эти воздействия, однако, производят другие ошибки (если они не полностью взаимны). Изменения частоты лазерного излучателя также могут быть источником рандомизации.

Все же, несмотря на указанные факторы, вклад в общую ошибку ВОГ эффектами обратного рассеяния может быть еще значительным или даже доминирующим. При непрерывном совершенствовании конструкции ВОГ чувствительность последнего к механическим и тепловым возмущениям будет уменьшаться, естественно ожидается неизбежное увеличение степени когерентности рассеянных волн. Эффекты остаточных влияний окружающих условий (механических и температурных изменений) развиваются медленно, что не позволяет выбрать частоту независимых случайных отсчетов достаточно высокой для существенного уменьшения ошибки, обусловленной обратным рассеянием. Частоту отсчетов нужно выбирать так, чтобы вторичные (рассеянные) волны были некоррелированы по фазе.

Для этого необходим дополнительный анализ, однако кажется вероятным, что влияние вторичных волн может быть сделано очень малым. К примеру, если в ВОГ использовать импульсную генерацию с импульсами, вводимыми в контур на частоте c / nL (т. е. длительность импульса равна времени обхода контура), а частоту несущей импульса сдвигать на величину c / nL в течение периода (т. е. размах частотного сдвига составляет (c / nL) в секунду) для рандомизации фазы рассеянной волны, то при п = 1.5 и L = 1000 м число отсчетов q = в секунду.

Тогда ошибка (экстраполированный дрейф) за счет рэлеевского рассеяния становится равной град/ (при «случайном блуждании» 1 с) или град/ч1/2 (при «случайном блуждании» 1 ч) . Для волоконного контура длиной 1000 м такая ошибка потребует изменения частоты источника излучения в 200 кГц на проход (на импульс) или 40 ГГц/с.

Ошибка измерения угловой скорости вращения контура за счет обратного рэлеевского рассеяния может быть минимизирована уменьшением степени взаимной когерентности между первичной и рассеянной волнами. Она может быть уменьшена снижением величины проинтерферировавшей с прямой волной мощности обратнорассеянной волны.

Уменьшение когерентности можно реализовать с помощью фазовой модуляции первичной волны, что рандомизирует фазы обратнорассеянных волн. Изменения окружающих условий и уменьшение длины когерентности источника излучения также могут сыграть роль в уменьшении влияния эффектов обратного рэлеевского рассеяния. Однако, даже с учетом выше указанных моментов, неопределенность в измерениях угловой скорости, обусловленная обратным рассеянием, может составлять значительную величину (намного больше фотонного предела).

Величину мощности обратнорассеянной волны, интерферирующей с прямой волной, можно значительно уменьшить используя импульсный сигнал, длительность которого значительно короче времени распространения луча в контуре . Это уменьшение имеет место вследствие того, что в любой данный момент короткий импульс локализуется в соответственно коротком сегменте волоконного контура. В результате лишь часть поля обратнорассеянной волны может приходить на выход в совпадении с прямым сигнальным импульсом. (рис 3.5.). Несовпадающее с импульсом обратнорассеянное поле может быть исключено временным стробированием.

Использование короткого импульса не только значительно снижает уровень мощности обратнорассеянного излучения при совпадении (примерно в 1000 раз при длительности импульса = 5 нс в контуре длиной 1000 м), но и позволяет определить расположение сегмента волоконного контура, где это излучение «зарождается». Обратнорассеянное излучение, обнаруживаемое в течение интервала

(3.18)

(в совпадении с прямым импульсом), «зарождается» только от рассеивателей, сосредоточенных в пределах соответствующего сегмента волокна на середине контура в интервале

(3.19)

где L - длина контура и - групповая скорость импульса.

Таким образом, если входной импульс сделать коротким, то число источников обратного рассеянного излучения уменьшается и определяется длиной короткого сегмента волокна .

Например, если t = 5 нс, то z = 1 м; при t =1 нс, z = 0,2 м. Поскольку расположение этого сегмента известно, его границы могут быть определены и физически изолированы от оставшейся части контура. Дальнейшего увеличения чувствительности ВОГ можно достигнуть уменьшением обратного рассеянного излучения лишь от этого короткого сегмента контура (по-видимому, это можно реализовать соответствующей оптимальной обработкой сигнала).

Для уменьшения фазовой ошибки, обусловленной обратным рэлеевским рассеянием, может быть предложен способ усреднения в течении постоянной интегрирования системы обработки.

3.4 Компенсация влияния эффекта Керра на точность ВОГ

Оптический нелинейный эффект Керра проявляется в виде возмущения коэффициента преломления среды при изменении интенсивности воздействующего на среду электрического поля. Для одномодового волокна это означает, что фазовая постоянная распространения среды становится функцией мощности распространяющейся волны. Если мощности оптических лучей, противоположно распространяющихся по контуру ВОГ, неодинаковы, а следовательно, неодинаковы постоянные распространения, то это приводит к фазовой невзаимности контура, и в результате к ошибке измерения угловой скорости. Характерно, что разность мощностей порядка 10^ Вт в таком материале, как плавленый кварц, дает ошибку, выходящую из пределов допусков для систем инерциальной навигации. Случайные вариации разности мощностей, зависящие от изменений окружающих условий, дают случайный дрейф ВОГ. В типовых условиях для измерения выходного сигнала при малой угловой скорости вращения требуемая полная мощность на входе фотодетектора составляет величину около 100 мкВт (с тем чтобы превысить уровень электронных или фотонных шумов). Поэтому разность мощностей должна контролироваться или быть известной с точностью до 10 от полной мощности. Сохранение такого жесткого допуска является трудной задачей. Однако это требование можно ослабить до практических значений специальной модуляцией источника излучения ВОГ или выбором источника с подходящими спектральными и статистическими характеристиками.

Возможный метод существенного уменьшения невзаимности контура, обусловленной влиянием оптического эффекта Керра (неравенства фазовых задержек для противоположно бегущих лучей в нелинейной среде) состоит в соответствующей прямоугольной модуляции источника излучения ВОГ, что согласует нелинейное взаимодействие между противоположно бегущими лучами и обеспечивает приблизительно одинаковые взвешенные средние значения фазовых задержек обоих лучей.

Изменения постоянной распространения волокна в зависимости от интенсивности волны является функцией также состояний поляризации двух противоположно бегущих волн. Для ВОГ необходимо, чтобы эти состояния поляризации были идентичны. С целью упрощения последующего анализа предположим, что состояния поляризации идентичны и линейны. Тогда возмущения постоянных распространения будут равны:

(3.20)

где - импеданс среды; - коэффициент Керра среды; - коэффициент, зависящий от поперечного распределения моды (порядка единицы); - пиковые интенсивности волн, которые в общем случае зависят от положения на волоконном контуре Z и времени t (рис. 3.5).

Важной особенностью этих уравнений является то, что интенсивность второй волны оказывает удвоенное воздействие на постоянную распространения по сравнению с воздействием первой волной. Подобным образом, удвоенный эффект на постоянную распространения оказывает первая волна, по сравнению со второй. Это так называемые «кросс-эффект» и «само-эффект». Если интенсивности двух волн не одинаковы, то появляются различные возмущения постоянных распространения и , что приводит к появлению фазовой невзаимности в контуре. Если возмущения зависят просто от суммы двух интенсивностей, то невзаимный эффект отсутствует (даже при неравенстве интенсивностей).

Модуляция волн служит для уменьшения относительного влияния «кросс-эффекта» (по времени). На рис. 3.6. показано распространение в контуре двух волн, интенсивности которых не равны друг другу.

Рис 3.5. Волоконный контур с направленным ответвителем.

Рис 3.6. Встречно бегущие прямоугольные волны неравной

интенсивности.

Как видно из рисунка, кросс-эффект имеет место, когда интенсивности двух волн совпадают, при несовпадении кросс-эффект отсутствует.

Каждая дискретная часть каждой волны «проявляет» само-эффект в течение всего времени при движении по длине контура L, а половину этого временного интервала проявляется кросс-эффект (за счет временной модуляции типа «меандр»). Поэтому множители 2 в квадратных скобках уравнений сводятся к единице (время совпадения двух волн уменьшилось вдвое) и невзаимность контура за счет эффекта Керра компенсируется. Другими словами, невзаимный фазовый сдвиг, накопленный в одну половину цикла модуляции, компенсируется невзаимным фазовым сдвигом противоположного знака, накопленным в течение другой половины цикла. Фаза, накопленная каждой из волн в течение одного полного цикла, будет определяться равным вкладом двух интенсивностей. Выразим интенсивность противоположно распространяющихся волн через интенсивность источника излучения на входе волоконного контура в момент t, I ( t ), и коэффициент расщепления К направленного ответвителя:

, (3.21)

где L - длина волоконного контура; - групповая скорость волны.

Накопленные фазовые сдвиги за счет влияния эффекта Керра для волн на выходе контура в момент t равны:

(3.22)

где в каждом случае имеет место синхронизация подынтегрального выражения с распространением волны.

Используя уравнения для фазовых постоянных и интенсивностей, получим

,

где - групповое время распространения луча в волоконном контуре.

Переходя к новым переменным интегрирования

(3.23)

в первом уравнении и

(3.24)

во втором, получаем:

(3.25)

Эти соотношения справедливы для любого закона временной модуляции интенсивности источника излучения. Первый член в квадратных скобках каждого соотношения описывает «само-эффект», который пропорционален интенсивности света на выходе волоконного контура в момент t. Второй член описывает «кросс-эффект». Он не зависит от времени, если удвоенное групповое время распространения луча в контуре, 2 , равно целому числу периодов модуляции интенсивности (в дальнейшем предполагается, что это условие выполняется). Невзаимная разность фаз двух лучей, обусловленная действием нелинейного эффекта Керра:

,

где угловые скобки указывают на среднее по времени.

Для определения ошибки измерения угловой скорости вращения, индуцированной эффектом Керра, допускается, что устройство детектирования формирует сигнал, пропорциональный средневзвешенному по интенсивности значению невзаимного фазового сдвига. Такое устройство детектирования основано на использовании фазовой модуляции для смещения и последующего синхронного метода выделения сигнала; при этом разность между основной частотой и гармоническими составляющими модуляции интенсивности и фазовой модуляции должна быть много больше частотной полосы детектирования полезного сигнала. Тогда ошибка в измерении угловой скорости вращения, обязанная влиянию эффекта Керра,

, (3.26)

где R - радиус витка контура; с - скорость света в вакууме.

Следовательно:

(3.27)

Это выражение связывает модулированную интенсивность I(t) и коэффициент расщепления по мощности К с ошибкой измерения угловой скорости за счет эффекта Керра. Ошибка становится равной нулю, если направленный ответвитель делит мощность поровну, т. е. если К = 0,5. Допуски на точность и стабильность коэффициента деления К очень малы для навигационного применения ВОГ. Для увеличения допуска на коэффициент деления К. можно ослабить интенсивность света уменьшением мощности излучателя либо увеличением поперечных размеров распространяющейся моды.

Первое, однако, ведет к возрастанию фотонного предела чувствительности ВОГ [см. главу 2], а второе вызывает другие проблемы, такие, например, как переход в многомодовый режим работы.

Оценка допуска .на коэффициент К применительно к использованию ВОГ в инерциальной навигации дает результаты представленные ниже (при этом использованы следующие значения входящих в формулу коэффициентов):

град/ч 1 / c ,

1/c,

мкВт/(мкм)2,

(мкм) 2/мкВт.

Результат подстановки:

(3.28)

При постоянной интенсивности сигнала (непрерывный режим работы) значение в квадратных скобках выражения равно -1. Следовательно, коэффициент деления необходимо настроить и сохранять настройку с точностью K=0.510-4 . Для практических реализуемых допусков необходимо снова рассмотреть модуляцию но интенсивности. При «квадратной» модуляции левая часть формулы обращается в нуль, как и ожидалось. Можно ожидать подобного результата для sin2-модуляции.

Однако эта форма модуляции сводит значение левой части уравнения к половинному значению для случая с постоянной интенсивностью. По-видимому, выбор формы импульса, в общем случае, должен быть согласован с рабочим циклом импульсной последовательности в целях обеспечения полной компенсации.

Таким образом, упрощенный анализ показывает, что модуляция источника излучения может существенно уменьшить ошибку в измерении угловой скорости вращения ВОГ, обусловленную влиянием эффекта Керра.

Выбор источника излучения ВОГ с соответствующими статистическими и спектральными характеристиками. Из выражения для следуют, что ошибка в измерении угловой скорости вращения за счет влияния эффекта Керра определяется:

<I2(t)>-2< I(t)> 2, (3.29)

где I(t) - интенсивность излучения источника.

Тогда может быть сведена к нулю, если правая часть соотношения обращается в нуль.

Широкий класс источников излучения обладает статистикой, обладающей этим свойством. В частности, излучение суперлюминесцентного диода обладает статистикой, близкой к статистике поляризованного теплового источника. Излучение лазера, генерирующего в режиме большого числа аксиальных мод, с увеличением числа мод переходит в тепловую радиацию (что, впрочем, легко объяснить физически - с увеличением числа статистически независимых осцилляторов примерно одинаковой интенсивности суммарное излучение приближается к тепловому излучению).

4. Расчёт сметной калькуляции НИР

4.1 Исходные положения

По согласованию с консультантом технико-экономического обоснование будет выполнено в виде условного расчёта сметной стоимости разработки.

При проведении расчёта предполагается, что работа выполняется в научно-исследовательском институте или конструкторском бюро с привлечением специалистов своего и смежных подразделений, а дипломник выступает в качестве руководителя темы.

В ходе расчёта необходимо выполнить следующие этапы:

определение трудоёмкости и календарных сроков работы;

расчёт расходов по отдельным статьям затрат и составление сметной калькуляции темы;

заключение

4.2 Определение трудоёмкости и календарных сроков работы

Планирование работы было проведено на основании ленточного графика представленного в таблице 4.1.

Для сокращения общей продолжительности выполнения НИР, работы следующие друг за другом и поручаемые разным подразделениям, проводятся одновременно или, по крайней мере, с перекрытием по срокам. Считаем, что дипломник выступает в качестве научного руководителя темы и занят ее выполнением вместе с группой сотрудников своего подразделения и привлекает по мере необходимости специалистов смежных отделов в соответствии с закреплённым за ними профилем работ.

4.3 Расчёт расходов по статьям затрат и составление сметной калькуляции

Под сметной калькуляцией понимается предварительный расчёт ожидаемых затрат, выполненный по номенклатуре статей.

Сметная калькуляция является основным документом, определяющим сумму ассигнований, необходимых для выполнения работы.

Проведем расчёт затрат по статьям.

Основная зарплата.

По этой статье учитываются расходы на выплату заработной платы, а также премий из фонда зарплаты всем участникам НИР, работающим в подразделениях.

В состав исполнителей не включаются руководители указанных подразделений, а также работники вспомогательных отделов и служб, зарплата которых входит в состав накладных расходов.

Расходы по заработной плате приведены в таблице:

Подразделение

Средняя зарплата, руб./чел. мес.

Трудоемкость, чел. мес.

Основная зарплата, руб.

Отдел №1

600

22

13200

Отдел научно-технической информации

500

2

1000

Итого

24

14200

Дополнительная заработная плата и отчисления на

социальное страхование.

Сумма расходов по основной заработной плате используется при расчёте дополнительной зарплаты и расходов по социальному страхованию, которые включаются в сметную калькуляцию в виде отдельных статей и определяются по формуле:

, (4.1)

где З1 - основная заработная плата.

Таким образом:

руб.

Накладные расходы.

Накладные расходы редко удаётся конкретно спланировать на всё время выполнения работы, поэтому величина накладных расходов выбирается пропорционально объёму расходов по основной заработной плате.

(4.2)

руб.

Прочие расходы.

По статьям «Материалы и комплектующие изделия», «Специальное оборудование для экспериментальных работ», «Производственные командировки», «Контрагентские и прочие производственные расходы» расходы и расчет сметной калькуляции не планировался.

На основании расчётов затрат по статьям составляется калькуляция сметной стоимости НИР, которая служит для обоснования плановых ассигнований по теме и отчёта по использовании ассигнований.

Итого сметная себестоимость:

руб.

Цена НТП:

Ц = 1.25 С = 35145 руб.

4.4 Выводы по расчету

На основании сделанных допущений и проведенных расчётов получены следующие результаты:

общая продолжительность работ . 6 мес.

общая трудоёмкость.24 чел.-мес.

цена НТП.35145 руб.

Затраты по этой теме целесообразны, так как результаты этой работы могут быть использованы как для дальнейших научно-технических работ исследовательского характера, так и для разработки и конструирования устройств рассмотренного типа, обладающих более совершенными точностными и технико-эксплуатационными характеристиками. Использование таких устройств позволит в будущем снизить их себестоимость за счёт совершенствования элементной базы, а при массовом производстве за счёт постепенного вытеснения более дорогостоящих приборов этого типа.

Результаты расчета сметной калькуляции представлены в табл.4.2.

№ п/п

Наименование статей

Сумма, руб.

1

Основная заработная плата

14200

2

Дополнительная заработная плата и отчисления на социальное страхование

2556

3

Накладные расходы

11360

Итого: 28116

Ленточный график работ

№ п/п

Наименование работ

Подразделение

Трудоёмкость чел./мес.

Численность чел.

Продолжительность работ, мес.

1

2

3

4

5

6

7

8

9

10

11

1

Составление и анализ задания

Отдел № 1

0,5

1

2

Сбор информационных материалов

ОНТИ

2

1

3

Составление обзора

Отдел № 1

1

1

4

Расчёт планово-экономических показателей

Отдел № 1

0,5

1

5

Изучение и анализ результатов смежных НИР

Отдел № 1

3

2

6

Составление и утверждение методик и алгоритмов исследования

Отдел № 1

3

2

7

Теоретические исследования и расчёты

Отдел № 1

4

2

8

Разработка схемотехнических методов решения проблем

Отдел № 1

4

2

9

Разработка рекомендаций по конструированию ВОГ

Отдел № 1

2

2

10

Обобщение результатов и составление отчёта

Отдел № 1

4

2

5. Безопасность жизнедеятельности и охрана труда

Дипломная работа посвящена анализу погрешностей волоконно-оптического гироскопа. В ходе ее выполнения были проведены необходимые расчеты и сделаны выводы, которые могут послужить материалом для дальнейших исследований в этой области. При разработке алгоритмов анализа и математическом моделировании описываемых процессов использовался персональный компьютер IBM с процессором Pentium, а также ряд дополнительного оборудования (принтер, модем и т.д.)

Вся пояснительная записка также оформлялась в электронном виде. В связи с этим раздел безопасности жизнедеятельности целесообразно рассмотреть с учетом ГОСТ 12.4.113-82, а также "СНиП для работников ВЦ".

Так как работа на персональных ЭВМ предполагалась в учебной лаборатории, то основные требования к условиям работы соответствуют «Гигиеническим требованиям к видедисплейным терминалам, персональным электронно-вычислительным машинам и организации работы в ВЦ»

Используемые программные продукты:

Microsoft Word 7.0

МathCad 6.0+

Нормальная работа человека-оператора во многом зависит от того, в какой мере условия его работы соответствуют оптимальным. При этом под условиями работы подразумевается комплекс различных факторов, установленных стандартами по безопасности труда.

5.1 Организация рабочих мест

Организацию рабочих мест необходимо осуществлять на основе современных эргономических требований. Конструкция рабочей мебели (столы, кресла и стулья) должна обеспечивать возможность индивидуальной регулировки соответственно росту работающего и создавать удобную позу. Часто используемые предметы и органы управления должны находится в оптимальной рабочей зоне.

Рабочее место для выполнения работ в положении сидя должно соответствовать требованиям ГОСТ 12.2.032-88, ГОСТ 22269-88, ГОСТ 21829-88 и требованиям технической эстетики. Рабочие места должны располагаться между собой на расстоянии не менее 1,2 м, рабочий стол должен регулироваться по высоте в пределах 680-760 мм, высота поверхности сиденья должна регулироваться в пределах 400-500 мм.

5.2 Температура, влажность, давление

Системы вентиляции и отопления в лабораторном помещении должны обеспечивать параметры микроклимата в соответствии с требованием ГОСТ 12.1.005-88, а также в соответствии с главой СНиП 2-33-75 "Отопление, вентиляция и кондиционирование воздуха".

температура: 20 - 2°С;

влажность: 50 - 10%;

давление: нормальное по ГОСТ 12.1.005-88.

Для поддержания заданных значений температуры и влажности в лабораторных помещениях применяют кондиционирование и вентиляцию. Кондиционирование воздуха должно обеспечивать автоматическое поддержание параметров микроклимата в необходимых пределах в течении всех сезонов года, очистку воздуха от пыли и вредных веществ, создание небольшого избыточного давления в чистых помещениях для исключения поступления неочищенного воздуха. Рекомендуемая интенсивность вентиляции для помещений с ЭВМ составляет 0,5-1 куб. м. свежего воздуха в минуту на каждый квадратный метр пола.

5.3 Требования к освещению

Освещение в помещении должно быть смешанным (естественным и искусственным). Освещенность поверхности рабочего стола должна находиться в пределах 300-500 лк, а общая освещенность должна быть не менее 400 лк. Освещенность экрана ( в плоскости экрана) 200 лк (СНиП 2.2.2.542-96).

Естественное освещение в помещении должно осуществляться в виде бокового освещения. Величина коэффициента естественной освещенности (к.е.о.) должна соответствовать нормативным уровням по СНиП 2-4-79 "Естественное и искусственное освещение. Нормы проектирования".

Искусственное освещение в помещении следует осуществлять в виде комбинированной системы освещения с использованием люминесцентных источников света в светильниках общего освещения. Уровни искусственной освещенности на рабочих местах в помещении должны соответствовать нормативным величинам по СНиП 14-4-79.

В помещении должно быть предусмотрено аварийное освещение для продолжения работы и других целей.

Осветительные установки должны обеспечивать равномерную освещенность с помощью преимущественно отраженного или рассеянного светораспределения, они не должны создавать слепящих бликов на клавиатуре и других частях пульта, а также на экране видеотерминала в направлении глаз оператора.

Источники света по отношению к рабочему месту следует располагать таким образом, чтобы исключить попадание в глаза прямого света.

Пульсация освещенности используемых ламп не должна превышать 10%.При естественном освещении следует применять средства солнцезащиты, снижающие перепады яркости между естественным светом и свечением экрана.

В поле зрения оператора должно быть обеспечено соответствующее распределение яркости. Отношение яркости экрана к яркости отражающей поверхности не должно превышать в рабочей зоне 3:1.

5.4 Требования к уровням шума и вибрации

Допустимые уровни звукового давления, уровня звука и эквивалентные уровни звука на рабочих местах должны соответствовать требованиям "Санитарных норм допустимых уровней шума на рабочих местах" (СН 3223-85) и не должны превышать предельно допустимых величин.

Уровни звука и эквивалентные уровни звука в лабораторных помещениях определены в ГОСТ 12.1.003-83 и составляют:

там, где работают математики-програмисты и операторы видео-дисплейных терминалов, не должны превышать 50 дБА;

в помещениях, где работают инженерно-технические работники - 60 дБА.

5.5 Требования к защите от статического электричества и излучений

Для предотвращения образования влаги и защиты от статического электричества в помещении необходимо использовать нейтрализаторы и увлажнители, а полы должны иметь антистатическое покрытие. Допустимые уровни напряженности электростатических полей не должны превышать 20 кВ в течении 1 часа (ГОСТ 12.1.045-84).

Напряженность электромагнитного поля:

по электрической составляющей: < 50 В/м;

по магнитной составляющей: < 5 А/м.

Устройства визуального отображения генерируют несколько типов излучений, в том числе рентгеновское, радиочастотное, видимое и ультрафиолетовое, однако уровни этих излучений достаточно низки и не превышают действующих норм.

для ультрафиолетового излучения: <10 Вт/м;

для рентгеновского: <100 мкР/ч.

В компьютерных классах необходимо контролировать уровень аэроионизации. Оптимальным уровнем аэроионизации в зоне дыхания работающего считается содержание легких аэроионов обоих знаков от 150 до 5000 в 1 куб.м. воздуха.

5.6 Требования к видеотерминальному устройству

В соответствии с нормами для работников ВЦ (СниП 2.2.2.542-96) видеотерминальное устройство должно отвечать следующим техническим требованиям:

Яркость свечения экрана- не менее 100 кд/м¤;

Минимальный размер светящейся точки- не более 0,31 мм;

.Контрастность изображения знака- не менее 0,8;

Частота регенерации изображения при работе с позитивным контрастом в режиме обработки текста- не менее 72 Гц;

Низкочастотное дрожание изображения в диапазоне 0,05-1 Гц должно находиться в пределах 0,1 мм;

Экран должен иметь антибликерное покрытие;

Размер экрана по диагонали должен быть не менее 31 см, при этом расстояние от глаз до экрана должно быть в пределах 40*80 см.

Количество точек в строке - не менее 640;

Использование в виде отдельного устройства с возможностью перемещения;

Опорное приспособление клавиатуры, позволяющее регулировать наклон в горизонтальной плоскости в пределах 5-15 град;

Высота среднего ряда клавиш не более 30мм;

Выделение групп клавиш цветом, размером, формой;

Минимальный размер клавиш 13 мм, а оптимальный 15 мм;

Расстояние между клавишами не менее 3 мм;

Одинаковый ход клавиш с сопротивлением 0,25Н-1,5Н;

Звуковая обратная связь;

Яркость бликов монитора не должна превышать 40 кд/кв.м

Неиспользуемое рентгеновское излучение, а также излучения в ультрафиолетовом, инфракрасном и радиочастотном диапазонах должны соответствовать гигиеническим нормам (ГОСТ 12.2.003-74, ГОСТ 12.3.002-75, ГОСТ 12.1.006- 84).

Для защиты глаз от экранного излучения рекомендуется использовать защитные экранные сетки. Видеомонитор должен быть оборудован поворотной площадкой, позволяющей перемещать дисплей в горизонтальной и вертикальной плоскостях в пределах 130*200 мм и изменять угол наклона на 10*15°. Клавиатура не должна быть жестко связана с монитором.

5.7 Электробезопасность

Питание лабораторного электрооборудования должно осуществляться от сети не более 380 В при частоте 50 Гц. Сопротивление изоляции токоведущих частей электроустановок до первого автомата максимальной токовой защиты должно быть не менее 0,5 МОм.

Для обеспечения безопасности обслуживающего персонала и нормальной работы ЭВМ в электрических установках 380/220 В предусматривается защитное заземление. Защитному заземлению подлежат металлические конструкции, которые могут оказаться под напряжением. В качестве сети заземления внутри зданий используются стальные трубы, электропроводка, нулевые провода силовой и осветительной сети.

5.8 Пожарная безопасность

Помещение для проведения лабораторных работ по пожарной опасности относится к категории Д, и должно удовлетворять требованиям по предотвращению и тушению пожара по ГОСТ 12.1.004-85. Обязательно наличие телефонной связи и пожарной сигнализации.

Материалы, применяемые для ограждающих конструкций и отделки рабочих помещений, должны быть огнестойкими. Для предотвращения возгорания в зоне расположения ЭВМ обычных горючих материалов (бумага) и электрооборудования, необходимо принять следующие меры:

в лаборатории должны быть размещены углекислотные огнетушители типа ОУ-2, ОУ-5, ОУ-8;

в качестве вспомогательного средства тушения пожара могут использоваться гидрант или устройства с гибкими шлангами;

в некоторых случаях, если этого требуют местные строительные инструкции, в помещениях лаборатории устанавливается спринклерная система;

для непрерывного контроля помещения лаборатории и зоны хранения носителей информации необходима система обнаружения пожаров. Для этого можно использовать комбинированные извещатели типа КИ-1.

Система должна быть сконструирована так, чтобы обеспечить отключение систем питания и кондиционирования воздуха. В сочетании с системой обнаружения следует использовать систему звуковой сигнализации.

Меры пожарной безопасности определены в ГОСТ 12.1.004-85.

Студенты допускаются к выполнению работ только после прохождения инструктажа по безопасности труда и пожарной безопасности в лаборатории в целом и на каждом рабочем месте.

5.9 Предполагаемые меры защиты

В связи с тем, что основным источником вредных воздействий является монитор видеотерминального устройства, основное внимание должно быть уделено ему.

Исходя из этого можно выделить два основных направления:

Использование монитора удовлетворяющего санитарным нормам.

Оснащение монитора защитным фильтром.

При покупке монитора необходимо отдавать предпочтение мониторам, соответствующим международному стандарту MPR-II. Так-же следует обращать внимание на маркировку монитора NI (без чередования строк) и LR (низкая радиация), такие мониторы наименее опасны для здоровья и не требуют защитного фильтра.

6. Экология и охрана окружающей среды

В настоящее время очень важными являются исследования, которые прямым или косвенным образом могут повлиять на экологическую обстановку, позволят улучшить технологические параметры приборов и механизмов, в производственном процессе изготовления которых используются вредные химические вещества и материалы.

В данной дипломной работе были проведены исследования погрешностей волоконно-оптических гироскопов (ВОГ) и предложен ряд схемотехнических методов улучшения их точностных и технологических характеристик. В настоящее время эти оптико-электронные приборы находят широкое применение в различных областях, благодаря их потенциальным возможностям использования в качестве чувствительных элементов вращения в инерциальных системах навигации, управления и стабилизации.

Применение в авиации и космонавтике более качественных и точных приборов несомненно благоприятно отразится на экологической обстановке окружающей среды. С созданием автоматизированных систем посадки и управления летательными аппаратами нового поколения снизиться процент аварий вызванных сбоями в аппаратуре старого образца. В частности, волоконно-оптические гироскопы могут полностью вытеснить сложные и дорогостоящие электромеханические (роторные) гироскопы и трёхосные гиростабилизированные платформы, которые помимо вредного воздействия на окружающую среду ( использование смазочных материалов подвижных частей, высокие электромагнитные поля, вредное производство) имеют гораздо низкий срок службы, а следовательно более высокие требования к их утилизации.

Использование новейших технических разработок позволит значительно повысить качество выпускаемых приборов и тем самым снизить требования по экологическому контролю за производством и эксплуатацией устройств, обладающих свойствами уникальными по сравнению с используемыми ранее.

Малые габариты и масса конструкций приборов, анализируемых в дипломной работе, позволят заметно снизить нагрузку на механическую часть летательных аппаратов, что даст возможность использовать освободившиеся ресурсы для аппаратуры экологического мониторинга.

Вопросы, рассмотренные в главе 2, позволяют сделать вывод о невысокой стоимости производства и конструирования гироскопов при массовом изготовлении, относительной простоте и пониженной вредности технологии. Важное значение имеет низкое потребление энергии при использовании волоконно-оптических устройств и полупроводниковых приборов, входящих в состав ВОГ, так как получение дополнительной энергии на борту всегда связано с использованием генераторных устройств, обладающих низкими экологическими характеристиками. Применение горюче-смазочных материалов повышает вероятность возникновения аварийных пожарных ситуаций и как следствие этого экологических катастроф. Использование ВОГ заметно снижает требования предъявляемые к утилизации отработавших свой срок механизмов, так как при производстве этих приборов используется значительно меньшее количество вредных веществ и материалов. Продолжительный срок работы и высокие ремонтные качества ВОГ также могут благоприятно сказаться на их использовании, так как использование ненадёжных механических приборов негативно влияет на экологическую обстановку.

Сделанные в работе выводы позволят продолжить исследования в области повышения как технических, так и производственно-эксплуатационных характеристик приборов что несомненно благоприятно скажется на увеличении срока службы, снижении стоимости и улучшении экологической обстановки, связанной с их работой.

Заключение

В ходе выполнения дипломной работы проведен анализ работы ВОГ, обобщенной модели шумов и нестабильностей произведена оценка предельной (потенциальной) чувствительности прибора. На основе свойства взаимности рассмотрена минимальная конфигурация ВОГ. Оценено современное состояние элементной базы. При этом значительное внимание уделено свойствам волоконных световодов и проведен анализ возможных неоднородностей и потерь для различных типов волокон. Рассмотрены основные элементы ВОГ: волоконный контур, излучатели и фотодетекторы, а также предложены способы компенсации шумов и нестабильностей ВОГ .

Отражены технико-экономические аспекты работы, вопросы безопасности жизнедеятельности при проведении исследований, а также проблемы экологической безопасности при использовании прибора.

На основании анализа проведенного в дипломной работе можно выделить два направления совершенствования ВОГ. Первое направление связано с улучшением параметров и характеристик существующих элементов BOГ и с созданием новых элементов, т. е. с развитием и освоением новой технологии изготовления элементов. Второе направление состоит в разработке методов и устройств исключения или компенсации различного рода шумов и нестабильностей прибора, в разработке новых схемотехнических вариантов ВОГ, что, в конечном счете, приведет к увеличению точности измерения угловой скорости. Оба направления тесно взаимосвязаны.

Совершенствование элементов ВОГ во многом, по-видимому, должно зависеть от перехода в диапазон 1,2. .1,3 мкм. Этот переход потребует создания и массового производства одномодового волокна и волокна, сохраняющего поляризацию, с малыми потерями (около 0,1 дБ/км).

Проектирование датчиков может быть существенно упрощено, если вместо обычного одномодового волокна будет использовано волокно, сохраняющее поляризацию. Однако такое волокно с требуемой эффективностью еще пока находится в экспериментальной стадии; требуется дальнейшее улучшение его качества и уменьшение стоимости. Задача промышленности состоит в создании волокна, сохраняющего поляризацию, с малыми потерями и стоимостью ненамного более обычного одномодового волокна.

Переход в длинноволновый диапазон, давая выигрыш в потерях, потребует увеличения физической длины контура с тем, чтобы сохранить требуемую чувствительность. Одним из преимуществ перехода к длинным волнам является увеличение сердечника волокна, что облегчает соединение излучателя с волокном, волокна с волокном, волокна с интегрально-оптическими схемами. Кроме этого, может встать проблема выбора излучателей и фотоприемников длинноволнового диапазона. Фотоприемники диапазона 1,2. 1,6 мкм, главным образом на основе InGaAsP, менее чувствительны, чем кремниевые фотоприемники диапазона 0,85 мкм. Длинноволновые диоды много дороже, чем диоды на 0,85 мкм. Таким образом, компоненты длинноволнового диапазона следует использовать в датчиках скорости вращения высокой эффективности (точности).

При выборе излучателя для датчика скорости вращения наряду с длиной волны важным является также ширина спектра излучения.

Одной из характерных особенностей излучателей ВОГ является та, что излучатель должен инжектировать в одномодовый волоконный световод достаточную оптическую мощность, примерно около 100 или более микроватт.

Это условие наталкивается на необходимость надлежащей фокусировки света от большинства лазеров, генерирующих преимущественно на одной поперечной моде. Излучение полупроводникового диодного лазера генерирующего на одной поперечной моде, нелегко ввести в световод, поскольку излучение имеет эллиптическое поперечное распределение с аберрациями. Если волокно соединяется встык с выходной гранью лазера, то коэффициент связи составляет от 10 до 20%; с помощью линз коэффициент связи можно увеличить до 50%. Для суперлюминесцентных диодов коэффициент связи несколько меньше.

Другое ограничение, налагаемое на источник излучения в ВОГ, определяется шумом обратного рэлеевского рассеяния света в волокне. Этот шум в основном может быт уменьшен за счет уменьшения длины когерентности излучения светового источника. Для получения хорошей точности ВОГ длина когерентности излучения должна составлять около 1 см. Некоторые диодные источники имеют длину когерентности менее 1 мм, и поэтом без всяких модификаций могут применяться в ВОГ.

Учитывая сказанное предпочтительно использование суперлюминесцентных диодов.

Отсутствие достаточного количества выпускаемых промышленностью соединителей одномодового волокна является серьезной помехой в развитии интерферометрических датчиков.


Подобные документы

  • Оптические кабели и разъемы, их конструкции и параметры. Основные разновидности волоконно-оптических кабелей. Классификация приемников оптического излучения. Основные параметры и характеристики полупроводниковых источников оптического излучения.

    курс лекций [6,8 M], добавлен 13.12.2009

  • Принцип действия обобщенного волоконно-оптического датчика. Оптическая схема модуляции света. Классификация фазовых (интерферометрических) датчиков. Внешний вид интерферометра световолоконного автоматизированного ИСА-1, технические характеристики.

    доклад [847,6 K], добавлен 19.07.2015

  • Конструкция оптического волокна и расчет количества каналов по магистрали. Выбор топологий волоконно-оптических линий связи, типа и конструкции оптического кабеля, источника оптического излучения. Расчет потерь в линейном тракте и резервной мощности.

    курсовая работа [693,4 K], добавлен 09.02.2011

  • Принцип построения волоконно-оптической линии. Оценка физических параметров, дисперсии и потерь в оптическом волокне. Выбор кабеля, системы передачи. Расчет длины участка регенерации, разработка схемы. Анализ помехозащищенности системы передачи.

    курсовая работа [503,0 K], добавлен 01.10.2012

  • Схема трассы волоконно-оптического кабеля. Выбор оптического кабеля, его характеристики для подвешивания и прокладки в грунт. Расчет параметров световода. Выбор оборудования и оценка быстродействия кабеля, его паспортизация. Поиск и анализ повреждений.

    курсовая работа [303,0 K], добавлен 07.11.2012

  • Математическая модель тетрады чувствительных элементов прибора БИУС-ВО. Принцип действия чувствительного элемента прибора БИУС-ВО – волоконно–оптического гироскопа. Разработка методики оценки шумовых составляющих канала измерения угловой скорости.

    дипломная работа [1,7 M], добавлен 24.09.2012

  • Принцип работы оптического волокна, основанный на эффекте полного внутреннего отражения. Преимущества волоконно-оптических линий связи (ВОЛС), области их применения. Оптические волокна, используемые для построения ВОЛС, технология их изготовления.

    реферат [195,9 K], добавлен 26.03.2019

  • Определение затухания (ослабления), дисперсии, полосы пропускания, максимальной скорости передачи двоичных импульсов в волоконно-оптической системе. Построение зависимости выходной мощности источника оптического излучения от величины электрического тока.

    контрольная работа [352,3 K], добавлен 21.06.2010

  • Цифровые волоконно-оптические системы связи, понятие, структура. Основные принципы цифровой системы передачи данных. Процессы, происходящие в оптическом волокне, и их влияние на скорость и дальность передачи информации. Контроль PMD.

    курсовая работа [417,9 K], добавлен 28.08.2007

  • Общее описание и назначение, функциональные особенности и структура пассивных компонентов волоконно-оптических линий связи: соединители и разветвители. Мультиплексоры и демультиплексоры. Делители оптической мощности, принцип их действия и значение.

    реферат [24,9 K], добавлен 10.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.