Полупроводниковые приборы и устройства

История развития и физические основы полупроводниковых приборов. Электронно-дырочный переход. История создания диодов. Ламповые диоды. Диодные выпрямители и детекторы. Три схемы включения биполярного транзистора. Устройство и принцип работы динистора.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 15.04.2010
Размер файла 2,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

30

Учреждение образования «Брестский государственный университет им. А.С. Пушкина»

Реферат на тему:

Полупроводниковые приборы и устройства

История развития полупроводниковых приборов

Техника полупроводниковых приборов стала самостоятельной областью электроники. Замена электронных ламп полупроводниковыми приборами успешно осуществлена во многих радиотехнических устройствах. На всем протяжении развития радиотехники широко применялись кристаллические детекторы, представляющие собой полупроводниковые выпрямители для токов высокой частоты. Для выпрямления постоянного тока электрической сети используют купоросные и селеновые полупроводниковые выпрямители. Однако они непригодны для высоких частот. Ещё в 1922г. сотрудник Нижегородской радио лаборатории О.В. Лосев получил генерирование электрических колебаний с помощью кристаллического детектора и сконструировал приёмник “Кристадин”, в котором за счет генерации собственных колебаний получалось усиление принимаемых сигналов. Он имел значительно большую чувствительность, нежели обычные приемники с кристаллическими детекторами. Открытие Лосева, к сожалению, не получило должного развития в последующие годы. Полупроводниковые триоды, получившие названия транзисторов, предложили в 1948 г. американские ученые Бардин, Браттейн и Шокли. По сравнению с электронными лампами у полупроводниковых приборов имеются существенные достоинства: 1.Малый вес и малые размеры. 2.Отсутствие затраты энергии на накал. 3.Большой срок службы (до десятков тысяч часов). 4.Большая механическая прочность (стойкость к тряске, ударам и другим видам механических перегрузок). 5.Различные устройства (выпрямители, усилители, генераторы) с полупроводниковыми приборами имеют высокий КПД, так как потери энергии в самих приборах незначительны. Вместе с тем полупроводниковые приборы в настоящее время обладают следующими недостатками: 1. Параметры и характеристики отдельных экземпляров приборов данного типа имеют значительный разброс. 2. Свойства приборов сильно зависят от температуры. 3. Работа полупроводниковых приборов резко ухудшается под действием радиоактивного излучения. и т.д. Транзисторы могут работать почти во всех устройствах, в которых применяются вакуумные лампы. В настоящее время транзисторы успешно применяются в усилителях, приёмниках, передатчиках, генераторах, измерительных приборах, импульсных схемах и во многих других устройствах.

Физические основы полупроводниковых приборов

Полупроводниковые материалы

Все твердые вещества по своим электрическим свойствам разделяют на проводники, полупроводники и диэлектрики. Полупроводники занимают по электропроводности промежуточное положение между металлами (проводниками электрического тока) и диэлектриками. Удельное электрическое сопротивление проводников составляет с=10-4 Ом•см, полупроводников - с=10-4 -1010 Ом•см, диэлектриков - с = 1010 Ом•см и выше.

Для изготовления полупроводниковых приборов в настоящее время используют помимо германия и кремния некоторые химические соединения, например арсенид галлия, окись титана, антимонид индия, фосфид индия и др. Наиболее широко применяют кремний и германий.

Германий и кремний - элементы четвертой группы периодической системы Д.И. Менделеева, т.е. являются четырехвалентными элементами. В валентной зоне каждого атома германия и кремния имеется по четыре валентных электрона. Германий и кремний имеют атомные кристаллические решетки. Связь между атомами в таких решетках парноэлектронная или ковалентная. Каждый атом в них связан с соседними двумя электронами - по одному от каждого атома.

Схематическое изображение кристалла германия на плоскости показано на рис.1. Каждый атом в монокристалле германия окружен четырьмя соседними атомами, с которыми он связан парноэлектронными связями. В результате валентная оболочка каждого атома имеет восемь электронов, т. е. оказывается полностью заполненной. В таком кристалле все валентные электроны связаны между собой прочными парноэлектронными связями. Свободных электронов, которые могли бы участвовать в переносе зарядов, нет.

Чистые полупроводники при нуле абсолютной температуры (Т=0єК) являются идеальными диэлектриками.

Однако в нормальных условиях, при комнатной температуре, некоторые валентные электроны кристаллической решетки получают энергию, достаточную для разрыва ковалентной связи, т. е. для перехода электрона из валентной зоны в зону проводимости. Вследствие разрыва одной парноэлектронной связи образуются два носителя заряда: электрон и дырка.

Электрон, как известно, является носителем элементарного отрицательного заряда. При разрыве парноэлектронной связи электрон отрывается от атома, после чего одна связь в атоме оказывается незаполненной - свободной. Незаполненная электронная связь в кристаллической решетке полупроводника называется дыркой. Дырка обладает положительным зарядом, по абсолютной величине равным заряду электрона, и, следовательно, является носителем положительного заряда. Дырка может быть заполнена электроном, оторвавшимся от соседнего атома. Процесс заполнения электроном дырки называется рекомбинацией. При этом в соседнем атоме на месте ушедшего электрона образуется новая дырка. В обычных условиях, т. е. при комнатной температуре, процесс возникновения пары электрон - дырка и рекомбинация происходят непрерывно. В результате устанавливается динамическое равновесие, при котором в чистом полупроводнике концентрация электронов равна концентрации дырок.

Наличие носителей зарядов в полупроводнике объясняет его проводимость. Проводимость чистого полупроводника, обусловленная электронами и дырками, возникающими только в результате разрыва парноэлектронных связей, называется собственной проводимостью.

При отсутствии внешнего электрического поля электроны и дырки перемещаются в объеме полупроводника беспорядочно. Если же к полупроводнику приложить напряжение, то в нем возникает упорядоченное движение электронов в одном направлении и дырок в другом - противоположном направлении. Через полупроводник протекает ток, который равен сумме токов электронного In и дырочного Ip, т. е.

I = In + Ip.

Ток, протекающий в полупроводнике при равновесной концентрации носителей зарядов (электронов и дырок), называется дрейфовым током или током проводимости.

Плотность дрейфового тока определяет удельную электропроводность полупроводников у. Так, для германия удельная электропроводность

уGe = 2 • 10-2 Ом-1 • см-1,

а для кремния

уSi = 4 • 10-6 Ом-1 • см-1,

т. е. уGe >> уSi.

С повышением температуры удельная электропроводность увеличивается по экспоненциальному закону.

Полупроводник без примесей называют собственным полупроводником или полупроводником і- типа. Он обладает собственной электропроводностью, которая, как было показано, складывается из электронной и дырочной электропроводности.

Если в полупроводнике имеются примеси других веществ, то дополнительно к собственной электропроводности появляется еще примесная электропроводность, которая в зависимости от рода примеси может быть электронной или дырочной.

Для получения полупроводника с электронной электропроводностью в чистый полупроводник - германий или кремний - вводят небольшое количество элемента пятой группы периодической системы элементов: сурьмы (Sb), мышьяка (As), фосфора (P). Их атомы взаимодействуют с атомами германия только четырьмя своими электронами (рис. 2) образуя прочные парноэлектронные связи с четырьмя соседними атомами германия. Пятый валентный электрон, например атома мышьяка, в образовании парноэлектронной связи не участвует. Поэтому он оказывается слабо связанным со своим атомом и может быть легко оторван от него. В результате он превращается в свободный электрон, который может свободно перемещаться в объеме полупроводника, создавая электронную проводимость. Атом мышьяка, потерявший один электрон, превращается в положительный ион, который оказывается неподвижным, так как он прочно удерживается в узле кристаллической решетки парноэлектронными связями.

Подвижные носители зарядов, концентрация которых в данном полупроводнике преобладает, называются основными носителями зарядов.

Элементы, атомы которых отдают свои электроны, создавая в полупроводнике избыток свободных электронов, называются донорами. Обычно донорами для германия являются мышьяк и сурьма, а для кремния - фосфор и сурьма. В полупроводнике с донорными примесями электроны являются основными носителями зарядов, а дырки - не основными.

Проводимость, обусловленная наличием в полупроводнике избыточных свободных электронов, называется электронной проводимостью.

Полупроводник, в котором основными носителями зарядов являются электроны, называется электронным полупроводником или полупроводником n- типа.

Для получения полупроводника с дырочной электропроводностью в кристалл чистого германия вводят примеси трехвалентных элементов: индий (In) и галлий (Ga) для германия; бор (В) и алюминий (Al) для кремния. При этом три валентных электрона, например индия, образуют три парноэлектронные связи с соседними атомами германия. В результате теплового движения электрон одного из соседних атомов германия может перейти в незаполненную связь атома индия. В атоме германия появится одна незаполненная связь - дырка (рис. 3). Захваченный атомом индия, четвертый электрон образует парноэлектронную связь и прочно удерживается атомом индия. Атом индия становится при этом неподвижным отрицательным ионом.

Примеси, атомы которых захватывают и прочно удерживают электроны атомов полупроводника, называются акцепторными или акцепторами.

Проводимость, обусловленная наличием в полупроводнике избытка подвижных дырок, т. е. превышением их концентрации над концентрацией электронов, называется дырочной проводимостью или проводимостью р- типа.

Основными носителями зарядов в полупроводнике с акцепторной примесью являются дырки, а не основными - электроны.

Полупроводники, в которых основными носителями зарядов являются дырки, называются дырочными полупроводниками или полупроводниками р- типа.

Рисунок 2 Рисунок 3

Электрический ток в полупроводнике может быть вызван двумя причинами:

- действием внешнего электрического поля;

- неравномерным распределением концентрации носителей зарядов по объему полупроводника.

Направленное движение подвижных носителей зарядов под воздействием электрического поля называют дрейфом (дрейфовое движение), а под воздействием разности концентраций носителей зарядов - диффузией (диффузионное движение). Неравномерность концентрации зарядов в какой-либо части полупроводника может возникнуть под действием света, тепла электрического поля и др.

В зависимости от характера движения носителей зарядов различают соответственно дрейфовый и диффузионный токи в полупроводниках.

Электронноырочный переход (p - n - переход)

Область на границе двух полупроводников с различными типами электропроводности называется электронно-дырочным переходом или p-n- переходом.

Пусть внешнее напряжение на переходе отсутствует. Так как носители зарядов в каждом полупроводнике совершают беспорядочное тепловое движение, то происходит их диффузия из одного полупроводника в другой. Из полупроводника n- типа в полупроводник р- типа диффундируют электроны, а в обратном направлении из полупроводника р- типа в полупроводник n- типа диффундируют дырки (рис.4). В результате диффузии носителей зарядов по обе стороны границы раздела двух полупроводников с различным типом электропроводности создаются объемные заряды различных знаков. В области n возникает положительный объемный заряд, который образован положительно заряженными атомами донорной примеси. Подобно этому в области р возникает отрицательный объемный заряд, образованный отрицательно заряженными атомами акцепторной примеси.

Рис. 4

Между образовавшимися объемными зарядами возникают так называемая контактная разность потенциалов: uK = цn - цp и электрическое поле, направленное от n- области к p- области.

Как видно, в p-n- переходе возникает потенциальный барьер, который препятствует диффузии основных носителей зарядов.

Высота потенциального барьера равна контактной разнице потенциалов и обычно составляет десятые доли вольта. Высота потенциального барьера возрастает при увеличении концентрации примесей в соответствующих областях, при этом толщина p-n- перехода d уменьшается. Для германия, например, при средней концентрации примесей uK = 0,3 - 0,4 В и d = 10-4 - 10-5 см, а при больших концентрациях - uК ? 0,7 В и d = 10-6 см. С увеличением температуры высота потенциального барьера уменьшается.

Одновременно с диффузионным перемещением основных носителей через границу происходит и обратное перемещение носителей под действием электрического поля контактной разности потенциалов. Такое перемещение не основных носителей зарядов называется дрейфовым.

При отсутствии внешнего электрического поля через p-n- переход протекают два тока: ток диффузии и ток дрейфа. Ток диффузии и ток дрейфа через p-n- переход протекают навстречу друг другу и взаимно компенсируются. Суммарный ток через p-n- переход равен нулю.

При образовании контактной разности потенциалов по обе стороны границы раздела полупроводников образуется слой с пониженной концентрацией основных носителей зарядов. Он обладает повышенным сопротивлением и называется запирающим слоем. Толщина его несколько микрон.

Внешнее напряжение U, приложенное плюсом к p- области p-n- перехода, а минусом к n- области, называется прямым напряжением Uпр. Если к p-n- переходу приложено внешнее прямое напряжение Uпр, то создаваемое им внешнее электрическое поле Eпр оказывается направленным навстречу электрическому полю p-n- перехода -Eк. В результате этого высота потенциального барьера понижается на величину внешнего напряжения. Одновременно уменьшается толщина запирающего слоя (dпр < d) и его сопротивление в прямом направлении становится малым. Так как высота потенциального барьера понижается, возрастает диффузионный ток, так как большее число носителей зарядов может преодолеть пониженный барьер. Ток дрейфа при этом почти не изменяется, так как он зависит главным образом от числа не основных носителей, попадающих за счет своих тепловых скоростей на p-n- переход из p- и n- областей.

Рис.5

При прямом напряжении Iдиф > Iдр и поэтому полный ток через переход т.е. прямой ток, уже не равен нулю:

Iпр = Iдиф ? Iдр > 0.

Ток, протекающий через p-n- переход под действием приложенного к нему прямого внешнего напряжения, называется прямым током. Протекающий через p-n- переход прямой ток направлен из p- области в n- область.

Введение носителей зарядов через p-n- переход при действии прямого внешнего напряжения в область полупроводника, где эти носители являются не основными, называется инжекцией.

Внешнее напряжение, приложенное “плюсом“ источника питания к n- области p-n- перехода, а “минусом“ к p- области называется обратным.

Рис. 6

Под действием обратного напряжения Uобр через переход протекает очень небольшой обратный ток Iобр, что объясняется следующим образом. Поле, создаваемое обратным напряжением Eобр, складывается с полем контактной разности потенциалов Eк. В результате этого потенциальный барьер повышается, а толщина самого запирающего слоя увеличивается (dобр > d). Этот слой еще сильнее обедняется носителями, и его сопротивление значительно возрастает, т. е. Rобр >> Rпр.

Внешнее поле оттягивает основные носители зарядов от p-n- перехода. Перемещение свободных носителей зарядов через p-n-переход уменьшается, и при обратном напряжении, равном Uобр = 0,2В, ток диффузии через переход прекращается, т.е. Iдиф = 0, так как собственные скорости носителей недостаточны для преодоления потенциального барьера. Однако не основные носители будут перемещаться через p-n- переход, создавая ток, протекающий из n-области в p- область (обратный ток Iобр). Он является дрейфовым током (током проводимости) не основных носителей через p-n- переход. Значительное электрическое поле, создаваемое обратным напряжением, перебрасывает через p-n- переход любой не основной носитель заряда, появившийся в этом поле.

Выведение не основных носителей через p-n- переход электрическим полем, созданным обратным напряжением, называют экстракцией носителей зарядов.

Таким образом, p-n- переход пропускает ток в одном направлении - прямом, и не пропускает ток в другом направлении - обратном, что определяет вентильные свойства p-n- перехода.

Вольтамперной характеристикой (ВАХ) p-n- перехода называется зависимость тока, протекающего через p-n- переход от приложенного внешнего напряжения I = f(U) (рис.7).

Рис. 7 - Вольтамперная характеристика p-n- перехода: 1 - прямая ветвь; 2 - обратная ветвь при лавинном пробое; 3 - обратная ветвь при тепловом пробое

Прямую 1 и обратную 2 ветви ВАХ изображают в различном масштабе, поскольку в нормальном режиме работы p-n- перехода обратный ток на несколько порядков меньше прямого.

При достижении обратным напряжением некоторой критической величины Uпроб происходит резкое уменьшение сопротивления p-n- перехода. Это явление называется пробоем p-n- перехода, а соответствующее ему напряжение - напряжением пробоя. Различают электрический и тепловой пробой. Электрический пробой (участок АБВ характеристики) является обратимым, т. е. при этом пробое в переходе не происходит необратимых изменений (разрушения структуры вещества). Могут существовать два вида электрического пробоя: лавинный и туннельный.

Лавинный пробой объясняется лавинным размножением носителей за счет ударной ионизации и за счет вырывания электронов из атомов сильным электрическим полем. Этот пробой характерен для p-n- переходов большой толщины, получающихся при сравнительно малой концентрации примесей в полупроводниках. Пробивное напряжение для лавинного пробоя составляет десятки или сотни вольт.

Явление ударной ионизации состоит в том, что при более высоком обратном напряжении электроны приобретают большую скорость и, ударяя в атомы кристаллической решетки, выбивают из них новые электроны, которые, в свою очередь, разгоняются полем и также выбивают из атомов электроны. Такой процесс усиливается с повышением напряжения.

Туннельный пробой объясняется явлением туннельного эффекта. Сущность последнего состоит в том, что при поле напряженностью более 105В/см, действующем в p-n- переходе малой толщины, некоторые электроны проникают через переход без изменения своей энергии. Тонкие переходы, в которых возможен туннельный эффект, получаются при высокой концентрации примесей. Напряжение, соответствующее туннельному пробою, обычно не превышает единиц вольт.

Области теплового пробоя соответствует на рис. 7 участок ВГ. Тепловой пробой необратим, т.к. он сопровождается разрушением структуры вещества в месте p-n- перехода. Причиной теплового пробоя является нарушение устойчивости теплового режима p-n- перехода. Это означает, что количество теплоты, выделяющейся в переходе от нагрева его обратным током, превышает количества теплоты, отводимой от перехода. В результате температура перехода возрастает, сопротивление его уменьшается и ток увеличивается, что приводит к перегреву перехода и его тепловому разрушению.

Рис. 8 - Вольтамперная характеристика p-n-перехода: 1 - при 20°С; 2 - при 50°С.

На электропроводность полупроводников значительное влияние оказывает температура. При повышении температуры усиливается генерация пар носителей зарядов, т. е. увеличивается концентрация носителей и проводимость растет. При повышении температуры прямой и обратный ток растут. Для p-n- переходов на основе германия обратный ток возрастает примерно в 2 раза при повышении температуры на каждые 10°C; на основе кремния - при нагреве на каждые 10°C обратный ток увеличивается примерно в 2,5 раза. Прямой ток при нагреве p-n- перехода растет не так сильно, как обратный. Это объясняется тем, что прямой ток возникает главным образом за счет примесной проводимости, а концентрация примесей не зависит от температуры.

Полупроводниковые приборы

Полупроводниковые диоды

Диод - полупроводниковый прибор, пропускающий электрический ток только одного направления и имеющий два вывода для включения в электрическую цепь. Электрод диода, подключённый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключённый к отрицательному полюсу -- катодом.

На рисунке изображён внешний вид некоторых полупроводниковых диодов: а- маломощный германиевый диод Д226Б, б- маломощный кремниевый диод Д-302, в- мощный кремниевый диод с воздушным охлаждением ВКД-200 и г- мощный кремниевый диод с водяным охлаждением ВКДВ-350.

История создания и развития диодов. Развитие диодов началось в третьей четверти XIX века сразу по двум направлениям: в 1873 году британский учёный Фредерик Гутри открыл принцип действия термионных (вакуумных ламповых с прямым накалом) диодов, в 1874 году германский учёный Карл Фердинанд Браун открыл принцип действия кристаллических (твёрдотельных) диодов. Принципы работы термионного диода были заново открыты тринадцатого февраля 1880 года Томасом Эдисоном, и затем, в 1883 году, запатентованы. Однако дальнейшего развития в работах Эдисона идея не получила. В 1899 году германский учёный Карл Фердинанд Браун запатентовал выпрямитель на кристалле. Джэдиш Чандра Боус развил далее открытие Брауна в устройство применимое для детектирования радио. Около 1900 года Гринлиф Пикард создал первый радиоприёмник на кристаллическом диоде. Первый термионный диод был запатентован в Британии Джоном Амброзом Флемингом (научным советником компании Маркони и бывшим сотрудником Эдисона) в 1904 году в ноябре шестнадцатого. В 1906 году в ноябре двадцатого Пикард запатентовал кремниевый кристаллический детектор. В конце XIX века устройства подобного рода были известны под именем выпрямителей, и лишь в 1919 году Вильям Генри Иклс ввёл в оборот слово «диод», образованное от греческих корней «di» -- два, и «odos» -- путь.

Типы диодов. Диоды бывают электровакуумными (кенотроны), газонаполненными (газотроны, игнитроны, стабилитроны), полупроводниковыми и др. В настоящее время в подавляющем большинстве случаев применяются полупроводниковые диоды.

Полупроводниковые диоды

Полупроводниковые диоды используют свойство односторонней проводимости p-n перехода -- контакта между полупроводниками с разным типом примесной проводимости, либо между полупроводником и металлом (Диод Шоттки).

Ламповые диоды. Ламповые диоды представляют собой радиолампу с двумя рабочими электродами, один из которых подогревается нитью накала. Благодаря этому, часть электронов покидает поверхность разогретого электрода (катода) и под действием электрического поля движется к другому электроду -- аноду. Если же поле направлено в противоположную сторону, электрическое поле препятствует этим электронам и тока (практически) нет.

Специальные типы диодов:

· Стабилитроны (диод Зенера). Используют обратную ветвь характеристики диода с обратимым пробоем для стабилизации напряжения.

· Туннельные диоды (диоды Лео Эсаки). Диоды, существенно использующие квантовомеханические эффекты. Имеют область т. н. «отрицательного сопротивления» на вольт-амперной характеристике. Применяются как усилители, генераторы.

· Варикапы. Используется то, что запертый p-n-переход обладает большой ёмкостью, причём ёмкость зависит от выставленного обратного напряжения. Применяются в качестве конденсаторов переменной ёмкости.

· Светодиоды (диоды Генри Раунда). В отличие от обычных диодов, при рекомбинации электронов и дырок в переходе излучают свет в видимом диапазоне, а не в инфракрасном. Однако, выпускаются светодиоды и с излучением в ИК диапазоне, а с недавних пор - и в УФ.

· Полупроводниковые лазеры. По устройству близки к светодиодам, однако имеют лазерный резонатор, излучают когерентный свет.

· Фотодиоды. Запертый фотодиод открывается под действием света.

· Солнечный элемент Подобен фотодиоду, но работает без смещения. Падающий на p-n-переход свет вызывает движение электронов и генерацию тока.

· Диоды Ганна. Используются для генерации и преобразования частоты в СВЧ диапазоне.

· Диод Шоттки. Диод с малым падением напряжения при прямом включении.

· Лавинно-пролётный диод. Диод, работающий за счёт лавинного пробоя.

· Магнитодиод. Диод, вольт-амперная характеристика которого существенно зависит от значения индукции магнитного поля и расположения его вектора относительно плоскости p-n-перехода.

· Стабисторы. При работе используется участок ветви вольт-амперной характеристики, соответствующий «прямому напряжению» на диоде.

· Смесительный диод -- предназначен для перемножения 2-ух высокочастотных сигналов.

· pin диод -- содержит область собственной проводимости между сильнолегированными областями. Используется в СВЧ-технике, силовой электронике, как фотодетектор.

·

Применение диодов

Диодные выпрямители

Трёхфазный выпрямитель Ларионова А. Н. на трёх полумостах

Диоды широко используются для преобразования переменного тока в постоянный (точнее, в однонаправленный пульсирующий). Диодный выпрямитель или диодный мост (то есть 4 диода для однофазной схемы (6 для трёхфазной полумостовой схемы или 12 для трёхфазной полномостовой схемы), соединённых между собой по схеме) -- основной компонент блоков питания практически всех электронных устройств. Диодный трёхфазный выпрямитель по схеме Ларионова А. Н. на трёх параллельных полумостах применяется в автомобильных генераторах, он преобразует переменный трёхфазный ток генератора в постоянный ток бортовой сети автомобиля. Применение генератора переменного тока в сочетании с диодным выпрямителем вместо генератора постоянного тока с щёточно-коллекторным узлом позволило значительно уменьшить размеры автомобильного генератора и повысить его надёжность. В некоторых выпрямительных устройствах до сих пор применяются селеновые выпрямители. Это вызвано той особенностью данных выпрямителей, что при превышении предельно допустимого тока, происходит выгорание селена (участками), не приводящее (до определенной степени) ни к потере выпрямительных свойств, ни к короткому замыканию - пробою. В высоковольтных выпрямителях применяются селеновые высоковольтные столбы из множества последовательно соединённых селеновых выпрямителей и кремниевые высоковольтные столбы из множества последовательно соединённых кремниевых диодов.

Диодные детекторы. Диоды в сочетании с конденсаторами применяются для выделения низкочастотной модуляции из амплитудно-модулированного радиосигнала или других модулированных сигналов. Диодные детекторы применяются почти во всех радиоприёмных устройствах: радиоприёмниках, телевизорах и т. п.. Используется квадратичный участок вольтамперной характеристики диода.

Диодная защита. Диоды применяются также для защиты разных устройств от неправильной полярности включения и т. п. Известна схема диодной защиты схем постоянного тока с индуктивностями от скачков при выключении питания. Диод включается параллельно катушке так, что в «рабочем» состоянии диод закрыт. В таком случае, если резко выключить сборку, возникнет ток через диод и сила тока будет уменьшаться медленно (ЭДС индукции будет равна падению напряжения на диоде), и не возникнет мощного скачка напряжения, приводящего к искрящим контактам и выгорающим полупроводникам.

Диодные переключатели. Применяются для коммутации высокочастотных сигналов. Управление осуществляется постоянным током, разделение ВЧ и управляющего сигнала с помощью конденсаторов и индуктивностей.

Диодная искрозащита. Этим не исчерпывается применение диодов в электронике, однако другие схемы, как правило, весьма узкоспециальны. Совершенно другую область применимости имеют специальные диоды, поэтому они будут рассмотрены в отдельных статьях.

Интересные факты

· В первые десятилетия развития полупроводниковой технологии точность изготовления диодов была настолько низкой, что приходилось делать «разбраковку» уже изготовленных приборов. Так, диод Д220 мог, в зависимости от фактически получившихся параметров, маркироваться и как переключательный (Д220А,Б), и как стабистор (Д220С). Радиолюбители широко использовали его в качестве варикапа.

· Диоды могут использоваться как датчики температуры.

· Диоды в прозрачном стеклянном корпусе (в том числе и современные SMD-варианты) могут обладать паразитной чувствительностью к свету (то есть радиоэлектронное устройство работает по-разному в корпусе и без корпуса, на свету).

· Американским учённым из университета штата Аризона удалось создать диод, состоящий всего из одной молекулы.

· Японским ученным удалось создать тепловой диод -- устройство, способное пропускать тепло только в одном направлении.

Достоинствами полупроводниковых диодов являются малые размеры и масса, длительный срок службы, высокая механическая прочность; недостатком - зависимость их параметров от температуры.

Полупроводниковые транзисторы

Транзистором называется полупроводниковый прибор с двумя электронно-дырочными переходами, предназначенный для усиления и генерирования электрических сигналов. В полупроводниковом триоде две p-области кристалла разделяются узкой n-областью. Такой триод условно обозначают p-n-p. Можно делать и n-p-n триод, т.е. разделять две n-области кристалла узкой p-областью. Транзисторы подразделяются на биполярные и полевые. Каждый из этих типов имеет свой принцип работы и конструктивное исполнение, однако, общим для них является наличие полупроводниковых p-n структур.

Условные графические обозначения (УГО) транзисторов приведены в таблице:

Тип прибора

Условное графическое обозначение

(УГО)

Биполярные

Биполярный p-n-p типа

Биполярный n-p-n типа

Полевые

С управляющим

p-n переходом

С каналом p-типа

С каналом n-типа

С изолированным

затвором

МОП транзисторы

С встроенным

каналом

Встроенный канал

p-типа

Встроенный канал

n-типа

С индуцированным

каналом

Индуцированный канал

p-типа

Индуцированный канал

n-типа

Биполярные транзисторы

Определение "биполярный" указывает на то, что работа транзистора связана с процессами, в которых принимают участие носители заряда двух типов - электроны и дырки. В транзисторе используются оба типа носителей - основные и неосновные, поэтому его называют биполярным. Биполярный транзистор состоит из трех областей монокристаллического полупроводника с разным типом проводимости: эмиттера, базы и коллектора.

· Э - эмиттер,

· Б - база,

· К - коллектор,

· ЭП - эмиттерный переход,

· КП - коллекторный переход,

· W - толщина базы.

Каждый из переходов транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают три режима работы транзистора:

1. Режим отсечки - оба p-n перехода закрыты, при этом через транзистор обычно идет сравнительно небольшой ток

2. Режим насыщения - оба p-n перехода открыты

3. Активный режим - один из p-n переходов открыт, а другой закрыт

В режиме отсечки и режиме насыщения управление транзистором невозможно. Эффективное управление транзистором осуществляется только в активном режиме. Этот режим является основным. Если на эмиттерном переходе напряжение прямое, а на коллекторном - обратное, то включение транзистора считают нормальным, при противоположно полярности - инверсным. Движение носителей заряда в транзисторе n-p-n типа показано на рисунке:

При подключении эмиттера к отрицательному зажиму источника питания возникает эмиттерный ток Iэ. Так как внешнее напряжение приложено к эмиттерному переходу в прямом направлении, электроны преодолевают переход и попадают в область базы. База выполнена из p-полупроводника, поэтому электроны являются для неё неосновными носителями заряда.

Электроны, попавшие в область базы, частично рекомбинируют с дырками базы. Однако базу обычно выполняют очень тонкой из p-проводника с большим удельным сопротивлением (малым содержанием примеси), поэтому концентрация дырок в базе низкая и лишь немногие электроны, попавшие в базу, рекомбинируют с её дырками, образуя базовый ток Iб. Большинство же электронов вследствие теплового движения (диффузия) и под действием поля коллектора (дрейф) достигают коллектора, образуя составляющую коллекторного тока Iк.

Три схемы включения биполярного транзистора: Различают схему включения с общей базой, общим эмиттером, общим коллектором. Схемы для p-n-p транзистора показаны на рисунках а, б, в:

Различают схему включения с общей базой, общим эмиттером, общим коллектором. Схемы для p-n-p транзистора показаны на рисунках а, б, в.

Полевые транзисторы

Полевые, или униполярные, транзисторы в качестве основного физического принципа используют эффект поля. В отличие от биполярных транзисторов, у которых оба типа носителей, как основные, так и неосновные, являются ответственными за транзисторный эффект, в полевых транзисторах для реализации транзисторного эффекта применяется только один тип носителей. По этой причине полевые транзисторы называют униполярными. В зависимости от условий реализации эффекта поля полевые транзисторы делятся на два класса: полевые транзисторы с изолированным затвором и полевые транзисторы с управляющим p-n переходом.

Полевые транзисторы с управляющим p-n переходом. Схематически полевой транзистор с управляющим p-n переходом можно представить в виде пластины, к торцам которой подключены электроды, исток и сток. На рис. показана структура и схема включения полевого транзистора с каналом n-типа:

В транзисторе с n-каналом основными носителями заряда в канале являются электроны, которые движутся вдоль канала от истока с низким потенциалом к стоку с более высоким потенциалом, образуя ток стока Ic. Между затвором и истоком приложено напряжение, запирающее p-n переход, образованный n-областью канала и p-областью затвора. При подаче запирающего напряжения на p-n-переход Uзи на границах канала возникает равномерный слой, обедненный носителями заряда и обладающий высоким удельным сопротивлением. Это приводит к уменьшению проводящей ширины канала. Изменяя величину этого напряжения, можно изменить сечение канала и, следовательно, изменять величину электрического сопротивления канала. Для полевого n-канального транзистора потенциал стока положителен по отношению к потенциалу истока. При заземленном затворе от стока к истоку протекает ток. Поэтому для прекращения тока на затвор нужно подать обратное напряжение в несколько вольт. Значение напряжения Uзи, при котором ток через канал становится практически равен нулю, называется напряжением отсечки Uзап.

Таким образом, полевой транзистор с затвором в виде p-n-перехода представляет собой сопротивление, величина которого регулируется внешним напряжением.

Практическое применение имеют две основные схемы включения. Схема с общим истоком (рис. а) и схема с общим стоком (рис. б) , которые показаны на рисунке:

Полевые транзисторы с изолированным затвором (МДП-транзисторы).

Термин "МДП-транзистор" используется для обозначения полевых транзисторов, в которых управляющий электрод - затвор - отделен от активной области полевого транзистора диэлектрической прослойкой - изолятором. Основным элементом для этих транзисторов является структура металл-диэлектрик-полупроводник (М-Д-П).Технология МДП-транзистора с встроенным затвором приведена на рисунке:

Исходный полупроводник, на котором изготовлен МДП-транзистор, называется подложкой (вывод П). Две сильнолегированные области n+ называется истоком (И) и стоком (С). Область подложки под затвором (З) называется встроенным каналом (n-канал). Физической основой работы полевого транзистора со структурой металл-диэлектрик-полупроводник является эффект поля. Эффект поля состоит в том, что под действием внешнего электрического поля изменяется концентрация свободных носителей заряда в приповерхностной области полупроводника. В полевых приборах со структурой МДП внешнее поле обусловлено приложенным напряжением на металлический электрод-затвор. В зависимости от знака и величины приложенного напряжения могут быть два состояния области пространственного заряда (ОПЗ) в канале - обогащение, объединение.

Полевые транзисторы относятся к маломощным приборам и применяются, главным образом, в приборостроении. Срок службы полупроводниковых триодов и их экономичность во много раз больше, чем у электронных ламп. За счёт чего транзисторы нашли широкое применение в микроэлектронике -- теле-, видео-, аудио-, радиоаппаратуре и, конечно же, в компьютерах. Они заменяют электронные лампы во многих электрических цепях научной, промышленной и бытовой аппаратуры.

Тиристоры

Тиристор является полупроводниковым прибором с тремя и более электронно-дырочными p-n-переходами. Они, в основном, применяются в качестве электронных ключей. В зависимости от числа внешних выводов они подразделяются на тиристоры с двумя внешними выводами - динисторы и тиристоры с тремя выводами - тринисторы. Для обозначения тиристоров принят буквенный символ VS.

На рисунке изображён внешний вид наиболее распространённых тиристоров: а- неуправляемый мощный таблеточного типа в керамическом корпусе, б- управляемый маломощный, используемый в схемах радиоэлектронных приборов, в- управляемый маломощный штыревого типа в металлическом корпусе, г- управляемый мощный штыревого типа в металлическом корпусе.

Устройство и принцип работы динистора. Структура, УГО и ВАХ динистора приведены на рисунке:

Внешняя p-область называется анодом (А), внешняя n-область называется катодом (К). Три p-n перехода обозначены цифрами 1, 2, 3. Структура динистора 4-х-слойная - p-n-p-n. Питающие напряжение Е подаётся на динистор таким образом, что 1 из 3 переходы открыты и их сопротивления незначительны, а переход 2 закрыт и все питающие напряжение Uпр приложено к нему. Через динистор протекает небольшой обратный ток, нагрузка R отключена от источника тока питания Е. При достижении критического напряжения, равному напряжению включения Uвкл переход 2 открывается, при этом все три перехода 1, 2, 3 будут находится в открытом (включенном) состоянии. Сопротивления динистора падает до десятых долей Ома. Динисторы по своему принципу - приборы ключевого действия. Во включенном состоянии (участок БВ) он подобен замкнутому ключу, а в выключенном (участок ОГ) - разомкнутому ключу.

Устройство и принцип работы тиристора (тринистора). Тринистор является управляемым прибором. Он содержит управляющий электрод (УЭ), подключаемый к полупроводнику р-типа или полупроводнику n-типа среднего перехода 2. Струкура, УГО и ВАХ тринистора (обычно называют тиристором) приведены на рисунке:

Напряжение Uвыкл, при котором начинается лавинообразное нарастание тока, может быть снижено введением неосновных носителей заряда в любой из слоев, прилегающих к переходу 2. В какой мере снижается Uвкл показано на ВАХ. Важным параметром является отпирающий ток управления Iу.от, который обеспечивает переключение тиристора в открытое состояние при напряжениях, меньших напряжения Uвкл. На рисунке показаны три значения напряжение включения UIвкл < Unвкл < Umвкл соответствует трем значениям управляющего тока UIу.от > Unу.от > Umу.от.

Рассмотрим простейшую схему с тиристором, нагруженным на резисторную нагрузку Rн

o Iа - ток анода (силовой ток в цепи анод-катод тиристора );

o Uак - напряжение между анодом и катодом;

o Iу - ток управляющего электрода ( в реальных схемах используют импульсы тока );

o Uук - напряжение между управляющим электродом и катодом;

o Uпит - напряжение питания.

Для перевода тиристора в открытое состояние не управляющий электрод подается от схемы формирования импульсов кратковременный (порядка нескольких микросекунд) управляющий импульс. Характерной особенностью рассматриваемого незапираемого тиристора, который очень широко используется на практике, является то, что его нельзя выключить с помощью тока управления. Для выключения тиристора на практике на него подают обратное напряжение Uак < 0 и поддерживают это напряжение в течении времени, большего так называемого времени выключения tвыкл. Оно обычно составляет единицы или десятки микросекунд.

Тиристоры широко используют в качестве вентилей в преобразователях электрической энергии, в системах автоматики, в электронных устройствах. В последние годы тиристоры почти полностью вытеснили электровакуумные и ионные вентили.


Подобные документы

  • Физические основы полупроводниковых приборов. Принцип действия биполярных транзисторов, их статические характеристики, малосигнальные параметры, схемы включения. Полевые транзисторы с управляющим электронно-дырочным переходом и изолированным затвором.

    контрольная работа [637,3 K], добавлен 13.02.2015

  • Работа полупроводниковых электронных приборов и интегральных микросхем. Некоторые положения и определения электронной теории твердого тела. Кристаллическое строение полупроводников. Электронно-дырочный переход. Вольтамперная характеристика п-р перехода.

    лекция [196,9 K], добавлен 15.03.2009

  • Физические элементы полупроводниковых приборов. Электрический переход. Резкий переход. Плоскостной переход. Диффузионный переход. Планарный переход. Явления в полупроводниковых приборах. Виды полупроводниковых приборов. Элементы конструкции.

    реферат [17,9 K], добавлен 14.02.2003

  • Полупроводниковые приборы. Выпрямительные свойства диодов. Динамический режим работы диодов. Принцип действия диода. Шотки, стабилитроны, стабисторы, варикапы. Туннельные диоды. Обращённый диод. Статическая характеристика и применение обращённого диода.

    реферат [515,0 K], добавлен 14.11.2008

  • Исследование полупроводниковых диодов. Изучение статических характеристик и параметров биполярного плоскостного транзистора в схеме с общим эмиттером. Принцип действия полевого транзистора. Электронно-лучевая трубка и проверка с ее помощью радиодеталей.

    методичка [178,3 K], добавлен 11.12.2012

  • Устройство, эквивалентная схема биполярного транзистора. Назначение эмиттера и коллектора. Основные параметры, принцип действия и схемы включения n–p–n транзистора. Режимы его работы в зависимости от напряжения на переходах. Смещение эмиттерного перехода.

    реферат [266,3 K], добавлен 18.01.2017

  • Физические основы и принцип работы светоизлучающих диодов как полупроводниковых приборов, излучающих некогерентный свет. Применение и анализ преимуществ и недостатков светоизлучающего диода. Стоимость светодиодных ламп и перспективы использования в ЖКХ.

    реферат [22,8 K], добавлен 03.03.2011

  • Отличия энергетических диаграмм проводников, полупроводников и диэлектриков. Принцип работы биполярного транзистора. Фотодиод: принцип работы, параметры и назначение. Определение параметров биполярных транзисторов, включенных но схеме с обидим эмиттером.

    контрольная работа [1,4 M], добавлен 05.07.2014

  • Термоэлектроника как основа работы полупроводниковых приборов. Принцип работы биполярного транзистора: схема с общей базой и общим эмиттером. Способ исследования потока тепла. Опыт с биполярным транзистором, показывающий положительную обратную связь.

    контрольная работа [418,7 K], добавлен 10.05.2015

  • Полупроводниковые материалы, изготовление полупроводниковых приборов. Переход электрона из валентной зоны в зону проводимости. Незаполненная электронная связь в кристаллической решетке полупроводника. Носители зарядов, внешнее электрическое поле.

    лекция [297,5 K], добавлен 19.11.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.