Конструирование микросхем и микропроцессоров

Разработка интегральной микросхемы в соответствии с требованиями, приведенными в техническом задании. Электрический расчет схемы с помощью программы электрического моделирования "VITUS". Топологии микросхемы, расчет геометрических размеров элементов.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 25.03.2010
Размер файла 187,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Московский Государственный институт электроники и математики

(Технический университет)

Кафедра: РТУиС

Пояснительная записка

по выполнению курсового проекта на тему:

«Конструирование микросхем и микропроцессоров»

Выполнил: студент группы Р-72

Густов А.М

Руководитель: доцент кафедры РТУиС

кандидат технических

наук Мишин Г.Т.

Москва 2009

Задание на курсовое проектирование

В данном курсовом проекте требуется разработать комплект конструкторской документации интегральной микросхемы К 237 ХА2. По функциональному назначению разрабатываемая микросхема представляет собой усилитель промежуточной частоты. Микросхема должна быть изготовлена по тонкопленочной технологии методом свободных масок (МСМ) в виде гибридной интегральной микросхемы (ГИМС).

Рис. 1 Схема электрическая принципиальная

Таблица 1. Номиналы элементов схемы

Элемент

Номинал

Элемент

Номинал

Элемент

Номинал

Элемент

Номинал

R1

950 Ом

R7

4,25 кОм

R13

1 кОм

R19

1 кОм

R2

14 кОм

R8

12,5 кОм

R14

3,5 кОм

C1

3800 пФ

R3

45 кОм

R9

500 Ом

R15

10 кОм

VT1-VT8

КТ 312

R4

35 кОм

R10

3 кОм

R16

3,5 кОм

E

7,25 В

R5

12,5 кОм

R11

10 кОм

R17

2,5 кОм

R6

950 Ом

R12

500 Ом

R18

1 кОм

Для подачи на схему входного сигнала и снятия выходного к микросхеме требуется подключить некоторое количество навесных элементов. Одна из возможных схем включения приведена на следующем рисунке.

Рис. 2 Возможная схема включения

Таблица 2. Номиналы элементов схемы включения

Элемент

Номинал

Элемент

Номинал

RA

8,2 кОм

CB

1 мкФ

RB

43 Ом

CC

0,033 мкФ

RC

2,2 кОм

CD

0,015 мкФ

RD

1,5 кОм

CE

4700 пФ

CA

3300 пФ

CF

3300 пФ

Технические требования:

Конструкцию микросхемы выполнить в соответствии с электрической принципиальной схемой по тонкопленочной технологии методом свободных масок в корпусе.

Микросхема должна удовлетворять общим техническим условиям и удовлетворять следующим требованиям:

предельная рабочая температура - 150 С;

расчетное время эксплуатации - 5000 часов;

вибрация с частотой - 5-2000 Гц;

удары многократные с ускорением 35;

удары однократные с ускорением 100;

ускорения до 50.

Вид производства - мелкосерийное, объем - 5000 в год.

Аннотация

Целью данного курсового проекта является разработка интегральной микросхемы в соответствии с требованиями, приведенными в техническом задании. Микросхема выполняется методом свободных масок по тонкопленочной технологии.

В процессе выполнения работы мы выполнили следующие действия и получили результаты:

- произвели электрический расчет схемы с помощью программы электрического моделирования “VITUS”, в результате которого мы получили необходимые данные для расчета геометрических размеров элементов;

- произвели расчет геометрических размеров элементов и получили их размеры, необходимые для выбора топологии микросхемы;

- произвели выбор подложки для микросхемы и расположили на ней элементы, а также в соответствии с электрической принципиальной схемой сделали соединения между элементами;

- выбрали корпус для микросхемы с тем расчетом, чтобы стандартная подложка с размещенными элементами помещалась в один из корпусов, рекомендуемых ГОСТом 17467-79.

Введение

Приведем принципы работы и основные характеристики разрабатываемой микросхемы:

Микросхема К 237 ХА 2 предназначена для усиления и детектирования сигналов ПЧ (промежуточной частоты) радиоприемных устройств не имеющих УКВ диапазона, а также для усиления напряжения АРУ (автоматической регулировки усиления). Широкополосный усилитель ПЧ состоит из регулируемого усилителя на транзисторах Т4, Т5 и Т6. Усиленный сигнал поступает на детектор АМ-сигналов (амплитудно-модулированных сигналов), выполненный на составном транзисторе Т7, Т8. Низкочастотный сигнал с резистора R19, включенного в эмиттерную цепь, подается через внешний фильтр на предварительный усилитель НЧ (низкой частоты), а также через резистор R15 на базу транзистора Т3, входящего в усилитель АРУ. Усиленное напряжение АРУ снимается с эмиттера транзистора Т2. Изменение напряжения на эмиттере транзистора Т2 вызывает изменение напряжения питания транзистора Т1, а следовательно и его усиления.

На частоте 465 кГц коэффициент усиления усилителя ПЧ составляет 1200 - 2500. Коэффициент нелинейных искажений не превышает 3%. Если входной сигнал меняется от 0,05 до 3 мВ, то изменение выходного напряжения не превышает 6дБ. Напряжение на выходе системы АРУ при отсутствии выходного сигнала составляет 3 - 4,5 В. Напряжение питания составляет 3,6 - 10 В. Потребляемая мощность не более 35 мВт.

Анализ задания на проект

Микросхема усиления промежуточной частоты (ПЧ) К 237ХА2 может быть изготовлена по тонкопленочной технологии с применением навесных элементов. Конструкция микросхемы выполняется методом свободной маски, при этом каждый слой тонкопленочной структуры наносится через специальный трафарет. На поверхности подложки сформированы пленочные резисторы, конденсаторы, а также контактные площадки и межэлементные соединения. Пленочная технология не предусматривает изготовление транзисторов, поэтому транзисторы выполнены в виде навесных элементов, приклеенных на подложку микросхемы. Выводы транзисторов привариваются к соответствующим контактным площадкам.

Электрический расчет принципиальной схемы

Электрический расчет производился с помощью системы “VITUS”.

Система VITUS - это компьютерное инструментальное средство разработчика электронных схем. Система VITUS позволяет рассчитать токи, напряжения, мощности во всех узлах и элементах схемы, частотные и спектральные характеристики схемы. Система VITUS объединяет в себе компьютерный аналог вольтметров, амперметров и ваттметров постоянного и переменного тока, генераторов сигналов произвольной формы, многоканального осциллографа, измерителя частотных характе-ристик.

Система VITUS :

позволяет описывать принципиальную схему как в графическом виде, так и на встроенном входном языке;

выводит требуемые результаты расчета в графическом виде;

снабжена справочником параметров элементов;

работает под управлением дружественного интерфейса.

Основной задачей электрического расчета является определение мощностей, рассеиваемых резисторами и рабочих напряжений на обкладках конденсаторов. В результате расчета были получены реальные значения мощностей и напряжений, которые являются исходными данными для расчета геометрических размеров элементов.

Результаты расчета приводятся в расчете геометрических размеров элементов.

Данные для расчета геометрических размеров тонкопленочных элементов

Таблица 3. Данные для расчета резисторов

Резистор

Рном , Вт

R

Резистор

Рном , Вт

R

R1

1,41E-6

0,2

0,1

R11

4,46E-3

0,22

0,1

R2

3,36E-8

0,22

0,1

R12

2,23E-4

0,2

0,1

R3

2,47E-4

0,22

0,1

R13

1,79E-5

0,2

0,1

R4

1,98E-4

0,22

0,1

R14

1,05E-2

0,2

0,1

R5

8,58E-6

0,22

0,1

R15

3,91E-10

0,22

0,1

R6

5,35E-13

0,2

0,1

R16

1,27E-6

0,2

0,1

R7

3,21E-5

0,2

0,1

R17

3,46E-4

0,2

0,1

R8

3,30E-3

0,22

0,1

R18

1,95E-4

0,2

0,1

R9

7,4E-5

0,2

0,1

R19

1,97E-4

0,2

0,1

R10

4,51E-5

0,2

0,1

Таблица 4. Данные для расчета конденсаторов

Конденсатор

Uраб , В

C1

2,348

0,23

0,115

Расчет геометрических размеров тонкопленочных резисторов, выполненных методом свободной маски (МСМ)

1. Исходные данные:

а). конструкторские:

,

где

Rн - номинальное сопротивление резистора;

R - относительная погрешность номинального сопротивления;

Pн - номинальная мощность;

Tmax C - максимальная рабочая температура МС;

tэкспл - время эксплуатации МС.

б). технологические: ,

где

- абсолютная погрешность изготовления;

lустан - абсолютная погрешность совмещения трафарета;

- относительная погрешность удельного сопротивления.

2. Определяем диапазон , в котором можно вести расчет:

0,02 Rmax < Rmin 900 < < 500

Видим, что неравенство не выполняется, значит все эти резисторы изготовить из одного материала невозможно. Чтобы мы все же могли изготовить резисторы, надо разбить их на две группы и для каждой группы выбрать свой материал.

Таблица 5. Разбивка резисторов на группы

Первая группа

R1, R6, R7, R9, R10, R12, R13, R14, R16, R17, R18, R19 (500 - 4250 Ом)

Вторая группа

R2, R3, R4, R5, R8, R11, R15 (10 - 45 кОм)

Расчет резисторов первой группы

1. Определяем диапазон , в котором можно вести расчет:

0,02 Rmax < < Rmin 85 < < 500

Видим, что неравенство выполняется, следовательно эти резисторы выполняются из одного материала. Для того чтобы резисторы были как можно меньше выберем материал с как можно большим удельным поверхностным сопротивлением (). Остановим свой выбор на материале «МЛТ-3М» Этот материал обладает следующими характеристиками:

Таблица 6. Материал для первой группы резисторов

Наименование

, Ом/?

R , 1/C

P0 , мВт/мм2

S, %/103 час

1

Сплав МЛТ-3М К0,028,005,ТУ

200 -500

0,0002

10

0,5

Как уже говорилось, лучше взять как можно больше, т.е. в данном случае это =500. Этот материал обладает неплохими характеристиками, присущими резистивным материалам, а именно: низким ТКС (R), низким коэффициентом нестабильности (старения) (S), хорошей адгезией и технологичностью.

2. Вычислим относительную температурную погрешность:

=0,0002(150-20)=0,026

3. Вычислим относительную погрешность старения:

где

tисп - время испытания за которое определен коэффициент старения S;

tисп = 1000 часов.

4. Вычислим относительную погрешность контактирования:

= 0,01 - 0,03 зададимся =0,01

5. Вычислим относительную погрешность формы:

кф = R - - - - = 0,2 - 0,1 - 0,026 - 0,025 -0,01=0,039;

6. Определение вида резистора (подстраиваемый или неподстраиваемый):

кф > b/ bmax , где bmax = 2 мм кф > 0,01 резистор неподстраиваемый.

Предпочтение отдается неподстраиваемому резистору.

7. Вычислим коэффициент формы рассчитываемого резистора:

= 950/500 = 1,9;

8. Определение вида резистора (прямой или меандр):

Если коэффициент формы меньше 10, то резистор прямой, а если больше десяти, то резистор изготовляется в форме меандра. Предпочтение отдается прямому резистору. В данном случае резистор изготовляется прямым.

9. Определение ширины резистора по мощности рассеяния:

10. Определение основного размера по заданной точности:

где l=b=0,02 при условии, что коэффициент формы больше единицы.

11. Выбор основного размера:

b = 0,78 мм

12. Определение длины резистора:

13. Проверка проведенных расчетов:

Ом расчет выполнен правильно !

На этом этапе мы рассчитали первый резистор из первой группы (R1). Расчет остальных резисторов этой группы аналогичен и далее не приводится. Результаты расчета всех резисторов данной группы сведены в таблицу.

Таблица 7. Результаты расчета резисторов первой группы

Резистор

Кф

bmin , мм

bmin p , мм

b, мм

l, мм

Вид резистора

R1

1,9

0,78

0,0086

0,78

1,48

Прямой, неподстр.

R6

1,9

0,78

0,0000053

0,78

1,48

Прямой, неподстр.

R7

8,5

0,57

0,02

0,57

4,85

Прямой, неподстр.

R9

1

1,03

0,086

1,03

1,03

Прямой, неподстр.

R10

6

0,60

0,03

0,60

3,60

Прямой, неподстр.

R12

1

1,03

0,15

1,03

1,03

Прямой, неподстр.

R13

2

0,77

0,03

0,77

1,54

Прямой, неподстр.

R14

7

0,59

0,39

0,59

4,13

Прямой, неподстр.

R16

7

0,59

0,0043

0,59

4,13

Прямой, неподстр.

R17

5

0,62

0,083

0,62

3,10

Прямой, неподстр.

R18

2

0,77

0,10

0,77

1,54

Прямой, неподстр.

R19

2

0,77

0,10

0,77

1,54

Прямой, неподстр.

На этом расчет резисторов первой группы завершен. Все резисторы получились прямыми и неподстраиваемыми. Благодаря этому размеры резисторов минимальны, что позволит располагать их на подложке компактно и с наибольшей степенью интеграции.

Расчет резисторов второй группы

1. Определяем диапазон , в котором можно вести расчет:

0,02 Rmax < < Rmin 900 < < 10000

Видим, что неравенство выполняется, следовательно эти резисторы выполняются из одного материала. Для того чтобы резисторы были как можно меньше выберем материал с как можно большим удельным поверхностным сопротивлением (). Остановим свой выбор на материале “КЕРМЕТ”. Этот материал обладает следующими характеристиками:

Таблица 8. Материал для второй группы резисторов

Наименование

, Ом/?

R , 1/C

P0 , мВт/мм2

S, %/103 час

2

Кермет К-50С

ЕТО,021,013,ТУ

5000

0,0004

10

0,5

Этот материал обладает хорошими характеристиками, свойственными резистивным материалам, а именно: низким ТКС (R), низким коэффициентом нестабильности (старения) (S), хорошей адгезией и технологичностью.

2. Вычислим относительную температурную погрешность:

=0,0004(150-20)=0,052

3. Вычислим относительную погрешность старения:

где

tисп - время испытания за которое определен коэффициент старения S;

tисп = 1000 часов.

4. Вычислим относительную погрешность контактирования:

= 0,01 - 0,03 зададимся =0,01

5. Вычислим относительную погрешность формы:

кф = R - - - - = 0,22 - 0,1 - 0,052 - 0,025 -0,01=0,033;

6. Определение вида резистора (подстраиваемый или неподстраиваемый):

кф > b/ bmax , где bmax = 2 мм кф > 0,01 резистор неподстраиваемый.

Предпочтение отдается неподстраиваемому резистору.

6. Вычислим коэффициент формы рассчитываемого резистора:

= 14000/5000 = 2,8;

8. Определение вида резистора (прямой или меандр)

Если коэффициент формы меньше 10, то резистор прямой, а если больше десяти, то резистор изготовляется в форме меандра. Предпочтение отдается прямому резистору. В данном случае резистор изготовляется прямым.

9. Определение ширины резистора по мощности рассеяния:

10. Определение основного размера по заданной точности:

где l=b=0,02 при условии, что коэффициент формы больше единицы.

11. Выбор основного размера:

b = 0,82 мм

12. Определение длины резистора:

13. Проверка проведенных расчетов:

Ом расчет выполнен правильно !

На этом этапе мы рассчитали первый резистор из второй группы (R2). Расчет остальных резисторов этой группы аналогичен и далее не приводится. Результаты расчета всех резисторов данной группы сведены в таблицу.

Таблица 9. Результаты расчет резисторов второй группы

Резистор

Кф

bmin , мм

bmin p , мм

b, мм

l, мм

Вид резистора

R2

2,8

0,82

0,0011

0,82

2,30

Прямой, неподстр.

R3

9

0,67

0,052

0,67

6,03

Прямой, неподстр.

R4

7

0,70

0,053

0,70

4,90

Прямой, неподстр.

R5

2,5

0,85

0,0185

0,85

1,03

Прямой, неподстр.

R8

2,5

0,85

0,36

0,85

2,13

Прямой, неподстр.

R11

2

0,91

0,47

0,91

1,82

Прямой, неподстр.

R15

2

0,91

0,00014

0,91

1,82

Прямой, неподстр.

На этом расчет резисторов второй группы завершен. Все резисторы получились прямыми и неподстраиваемыми. Вследствие этого размеры резисторов минимальны, что позволит располагать их на подложке компактно и с наибольшей степенью интеграции.

Расчет резисторов закончен

Расчет контактных переходов для резисторов первой группы

1. Исходные данные для низкоомных резисторов:

где

Rн - номинальное сопротивление резистора;

- относительная погрешность контактирования;

- удельное поверхностное сопротивление;

bmin - минимальная ширина резистора;

2. Рассчитаем максимально допустимое значение сопротивления контактного перехода:

Ом;

3. Рассчитаем сопротивление контактного перехода:

Ом;

4. Проверка условия:

Rк доп должно быть больше, чем Rк п. Условие соблюдается.

5. Находим минимальную длину контактного перехода:

мм;

6. Находим реальную длину контактного перехода:

Остальные резисторы данной группы удовлетворяют этому условию.

Расчет контактных переходов для резисторов второй группы

1. Исходные данные для высокоомных резисторов:

,

где

Rн - номинальное сопротивление резистора;

- относительная погрешность контактирования;

- удельное поверхностное сопротивление;

bmin - минимальная ширина резистора;

2. Рассчитаем максимально допустимое значение сопротивления контактного перехода:

Ом;

3. Рассчитаем сопротивление контактного перехода:

Ом;

4. Проверка условия:

Rк доп должно быть больше, чем Rк п. Условие соблюдается.

5. Находим минимальную длину контактного перехода:

мм;

6. Находим реальную длину контактного перехода:

Остальные резисторы данной группы удовлетворяют этому условию.

Расчет геометрических размеров тонкопленочных конденсаторов, выполненных методом свободной маски (МСМ)

1. Исходные данные:

а). конструкторские:

,

где

Cн - номинальная емкость конденсатора;

C - относительная погрешность номинальной емкости;

Up- рабочее напряжение на конденсаторе;

Tmax C - максимальная рабочая температура МС;

tэкспл - время эксплуатации МС.

б). технологические:

,

где

- абсолютная погрешность изготовления;

lустан - абсолютная погрешность совмещения трафарета;

- относительная погрешность удельной емкости.

2. Выбор материала диэлектрика:

В качестве материала диэлектрика будем использовать “СТЕКЛО ЭЛЕКТРОВАКУУМНОЕ”. Характеристики этого материала приведены в таблице:

Таблица 10. Материал диэлектрика конденсатора

Материал

С0, пФ/мм2

tg

Eпр, В/мкм

с, 10-4

S, %/1000ч

Стекло электровакуумное С41-1 НПО.027.600

100 - 300

5 - 6

0,002 -

0,005

200 - 400

2

1,5

3. Определение толщины диэлектрика:

мкм,

где

Кз - коэффициент запаса, необходимый для обеспечения надежностных характеристик и равный 2 - 4. Примем

Кз = 2.

4. Определение удельной емкости по рабочему напряжению:

5. Определение коэффициента формы конденсатора:

Для большей компактности микросхемы выберем коэффициент формы конденсатора равным двум. Конденсатор такой формы удобнее разместить на подложке, чем квадратный.

Кф = 2;

6. Определение относительной погрешности старения:

где

tисп - время испытания за которое определен коэффициент старения S;

tисп = 1000 часов.

7. Определение относительной температурной погрешности:

=0,0002(150-20)=0,026

8. Вычисление относительной погрешности:

= 0,23-0,115-0,026-0,075 = 0,014;

9. Определение удельной емкости по относительной погрешности:

;

10. Определение вида конденсатора:

Результаты расчета показали, что конденсатор будет изготавливаться неподстраиваемым. Это наиболее оптимальный вид конденсатора.

11. Выбор удельной емкости:

Удельная емкость выбирается из следующего соотношения:

и удовлетворять диапзону самого материала.

С0 = 300 пФ/мм2

12. Определение площади перекрытия обкладок:

S = Cн/C0 =3800/300 = 12,7 мм2;

13. Определение размеров верхней обкладки:

;

;

14. Определение размеров нижней обкладки:

;

;

15. Определение размеров диэлектрика:

;

;

16. Определение площади, занимаемой конденсатором:

мм2.

На этом расчет конденсатора закончен. Конденсатор получился неподстраиваемым. Вследствие этого его размеры минимальны, что позволит расположить его на подложке компактно и с наибольшей степенью интеграции.

Расчет конденсаторов закончен !

Выбор и обоснование топологии

1. Выбор топологии производится на основе принципиальной электрической схемы данной микросхемы;

2. Выбран вариант технологического процесса - метод свободной маски;

3. Перечень конструкторских и технологических ограничений:

Оборудование имеет шесть позиций:

- низкоомные резисторы и подслой для контактных площадок

- высокоомные резисторы

- нижняя обкладка конденсатора и соединительные проводники

- диэлектрик конденсатора

- верхняя обкладка конденсатора и контактные площадки

- защитный слой;

4. Ограничение перечня элементов в пленочном исполнении;

5. Произведен расчет геометрических размеров элементов;

6. Определение необходимой площади подложки:

, где Кзап=0,5-0,75

Из перечня стандартных размеров выбираем подходящие размеры подложки . Исходя из проведенных расчетов выберем подложку с размерами 12x20 мм.

7. При проведении граф-анализа данной схемы установлено, что все пленочные и навесные элементы расположены в плоскости, и схема их соединений удовлетворяет всем конструкторским и технологическим требованиям.

Выбор типоразмера корпуса произведен согласно геометрическим размерам подложки. Выбор типоразмера корпуса произведен с таким расчетом, чтобы подложка стандартных размеров с размещенными на ней элементами помещалась в выбранный корпус. Корпус 1221.18-5 ГОСТ 17467-88. Корпус металлостеклянный прямоугольной формы с продольным расположением выводов. Он обладает следующими достоинствами:

хорошо экранирует плату от внешних наводок;

изоляция коваровых выводов стеклом обеспечивает наилучшую герметизацию и устойчивость к термоциклированию;

крепление крышки контактной сваркой обеспечивает хорошую герметизацию и прочность;

хорошо согласовывается с координатной сеткой.

Технологическая часть

Последовательность технологического процесса

Изготовление масок;

Подготовка подложек;

Формирование тонкопленочной структуры;

Подгонка номиналов;

Резка пластин на кристаллы;

Сборка;

Установка навесных элементов;

Контроль параметров;

Корпусная герметизация;

Контроль характеристик;

Испытания;

Маркировка;

Упаковка.

Методы формирования тонкопленочных элементов

Основными методами нанесения тонких пленок в технологии ГИМС являются: термическое испарение в вакууме, катодное, ионно-плазменное и магнетронное распыления.

Рис. 5. Методы осаждения тонких пленок

Термическое испарение в вакууме 10-3 - 10 -4 Па предусматривает нагрев материала до температуры, при которой происходит испарение, направленное движение паров этого материала и его конденсация на поверхности подложки. Рабочая камера вакуумной установки (Рис. 5, а) состоит из металлического или стеклянного колпака 1, установленного на опорной плите 8. Резиновая прокладка 7 обеспечивает вакуум-плотное соединение. Внутри рабочей камеры расположены подложка 4 на подложкодержателе 3, нагреватель подложки 2 и испаритель вещества 6. Заслонка 5 позволяет в нужный момент позволяет прекращать попадание испаряемого вещества на подложку. Степень вакуума в рабочей камере измеряется специальным прибором - вакуумметром.

а) - термическое испарение в вакууме; б) - катодное распыление;

в) - ионно-плазменное распыление;

1 - колпак; 2 - нагреватель подложки; 3 - подложкодержатель;

4 - подложка; 5 - заслонка; 6 - испаритель; 7 - прокладка;

8 - опорная плита; 9 - катод-мишень; 10 - анод; 11 - термокатод

Катодным (ионным) распылением (Рис. 5, б) называют процесс, при котором в диодной системе катод-мишень 9, выполненный из распыляемого материала, оседающие в виде тонкой пленки на подложке 4. Ионизация инертного газа осуществляется электронами, возникающими между катодом-мишенью 9 и анодом 10 при U= 3-5 кВ и давлении аргона 1-10 Па.

При ионно-плазменном распылении (Рис. 5, в) в систему анод 10 - катод-мишень 9 вводят вспомогательный источник электронов (термокатод 11). Перед началом работы рабочая камера 1 откачивается до вакуума 10-4 Па и на термокатод 11 подается ток, достаточный для разогрева его и создания термоэлектронного тока (термоэлектронная эмиссия). После разогрева термокатода 11 между ним и анодом 10 прикладывается U=200 В, а рабочая камера наполняется инертным газом (Ar) до давления 10-1 - 10-2 Па - возникает газовый плазменный разряд. Если подать отрицательный потенциал на катод-мишень 9 (3-5 кВ), то положительные ионы, возникающие вследствие ионизации инертного газа электронами, будут бомбардировать поверхность катода-мишени 9, распылять его, а частицы материала оседать на подложке 4, формируя тонкую пленку.

Определенная конфигурация элементов ИМС получается при использовании специальных масок, представляющих собой моно- или биметаллические пластины с прорезями, соответствующими топологии (форме и расположению) пленочных элементов.

Для формирования сложных ТПЭ большой точности применяют фотолитографию, при которой сплошные пленки материалов ТПЭ наносят на подложку, создают на ее поверхности защитную фоторезистивную маску и вытравливают незащищенные участки пленки. Существует несколько разновидностей этого метода. Например, рпи прямой фотолитографии вначале на диэлектрическую подложку наносят сплошную пленку резистивного материала и создают защитную фоторезистивную маску, черз которую травят резистивный слой. Затем эту маску удаляют и сверху наносят сплошную пленку металла (например, алюминия). После создания второй фоторезистивной маски и травления незащищенного алюминия на поверхности подложки остаются полученные ранее резисторы, а также сформированные проводники и контактные площадки, закрытые фоторезистивной маской.

Удалив ненужную более маску, на поверхность наносят сплошную защитную пленку (например, SiO2) и в третий раз создают фоторезистивную маску, открывая участки защитного покрытия над контактными площадками. Протравив защитное покрытие в этих местах и удалив фоторезистивную маску, получают плату ГИМС с пленочными элементами и открытыми контактными площадками.

Использованная литература

1. Методические указания к выполнению курсового проекта по курсу «Конструирование микросхем и микропроцессоров», МИЭМ, 1988

2. Романычева Э.Т., Справочник: ”Разработка и оформление конструкторской документации РЭА”, Радио и связь, 1989


Подобные документы

  • Анализ исходных данных и выбор конструкции. Разработка коммутационной схемы. Расчет параметров элементов. Тепловой расчет микросхемы в корпусе. Расчет паразитных емкостей и параметров надежности микросхемы. Разработка технологии изготовления микросхем.

    курсовая работа [150,4 K], добавлен 12.06.2010

  • Разработка конструкции, топологии и технологического процесса интегральной микросхемы по заданной электрической схеме. Топологический расчет транзистора и полупроводникового кристалла. Расчет геометрических размеров резисторов и конденсаторов.

    курсовая работа [1,3 M], добавлен 18.02.2010

  • Разработка усилителя слабых сигналов в виде интегральной микросхемы (ИМС) в корпусе. Выбор технологии изготовления. Расчет геометрических размеров и топологии элементов интегральной микросхемы. Выбор навесных компонентов, типоразмера платы и корпуса.

    курсовая работа [381,0 K], добавлен 29.10.2013

  • Конструктивные и технологические ограничения, которые учитываются при разработке топологии интегральной микросхемы на биполярных транзисторах, схемотехнические параметры. Порядок расчета полупроводниковых резисторов, общие сведения об их изготовлении.

    курсовая работа [1,8 M], добавлен 26.05.2010

  • Использование параметрических феррорезонансных стабилизаторов напряжения. Конструктивно-технологическое исполнение интегральной микросхемы. Расчет интегрального транзистора и его характеристики. Разработка технических требований и топологии микросхемы.

    курсовая работа [140,6 K], добавлен 15.07.2012

  • Топологический расчет схемы принципиальной электрической для толстопленочной гибридной интегральной микросхемы (ГИС). Конструирование, технология толстопленочных ГИС. Расчет толстопленочных резисторов и конденсаторов. Выбор корпусов для микросхем.

    курсовая работа [260,5 K], добавлен 03.02.2010

  • Основные принципы построения АМ-ЧМ приемников. Анализ схемы электрической принципиальной ИМС TA2003. Разработка физической структуры кристалла, технологического маршрута изготовления и топологии интегральной микросхемы. Компоновка элементов и блоков.

    дипломная работа [2,0 M], добавлен 01.11.2010

  • Электрические параметры интегральной микросхемы (ИМС). Расчет параметров модели полевого транзистора с управляющим p-n-переходом. Моделирование схемы включения истокового повторителя. Разработка топологии и технологического маршрута изготовления ИМС.

    дипломная работа [1,9 M], добавлен 29.09.2010

  • Конструирование микросхемы по электрической принципиальной схеме. Обоснование выбора материала подложки. Расчет тонкопленочных конденсаторов, резисторов. Диапазон рабочих температур. Выбор навесных элементов. Расчет показателя надежности микросхемы.

    контрольная работа [48,2 K], добавлен 28.09.2012

  • Упрощенная модель кремниевого биполярного транзистора. Частичная схема для расчета тока при комбинации заданных входных сигналов "1110". Максимальные мощности резисторов. Разработка топологии интегральной микросхемы, рекомендуемые размеры подложек.

    контрольная работа [1,5 M], добавлен 15.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.