Расчет системы передачи дискретных сообщений
Источник сообщений как непрерывный процесс и дискретизатор для его передачи. Кодирования, модулятор и модуляция гармонического переносчика. Канал связи для передачи сигнала. Демодулятор для обработки принимаемого сигнала. Декодер и фильтр–восстановитель.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 23.01.2010 |
Размер файла | 392,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Министерство Образования Российской Федерации
Московский Государственный Авиационный Институт
Кафедра Телекоммуникационных Систем
Курсовая работа по ТЭС
Расчет системы передачи дискретных сообщений
Москва 2008
Задание на курсовую работу по курсу "Теория электрической связи"
Рассчитать основные характеристики системы передачи сообщений (рис.1), включающий в себя источник сообщений (ИС), дискретизатор (Д), кодирующее устройство (Кодер), модулятор (Мод), линия связи, демодулятор (Дем), декодер (Дек) и фильтр-восстановитель (ФВ).
Рис. 1
Исходные данные
amin = -12,8 B;
amax = 12,8 B;
Fc = 104 Гц;
j = 126;
i = 3;
Вид модуляции АМ;
N0 = 1,45*10-7B2/Гц;
Способ приема некогерентный.
Источник сообщений
Источник сообщений выдает сообщение а(t), представляющее собой непрерывный стационарный случайный процесс, мгновенные значения которого в интервале а min a max распределены равномерно, а мощность сосредоточена в полосе частот от 0 до Fc.
Требуется:
Записать аналитические выражения и построить график одномерной плотности вероятности мгновенных значений сообщения а(t).
Найти мат. ожидание и дисперсию сообщения а(t)
Построить график случайного процесса и на графике обозначить max значение сигнала, математическое ожидание и среднеквадратичное отклонение.
;
;
;
;
;
Дискретизатор
Передача непрерывного процесса осуществляется дискретными методами. Для этого сообщение а(t) дискретизируется по времени и квантуется по уровню с равномерным шагом. Шаг квантования по уровню а= 0,1В.
Требуется:
Определить шаг дискретизации по времени (t).
Определить число уровней квантования (L).
Рассчитать среднюю мощность шума квантования.
Рассматривая дискретизатор как источник дискретного сообщения с объемом алфавита L, определить его энтропию и производительность (Н, Н'), отсчеты, взятые через интервал t считать независимыми.
1) ;
2) ;
Так, как p(a1)= p(a2)=…= p(ai), что
;
Следовательно
;
.
Кодер
Кодирование осуществляется в два этапа.
Первый этап:
Производится примитивное кодирование каждого уровня квантованного сообщения - разрядным двоичным кодом.
Второй этап:
К полученной - разрядной двоичной кодовой комбинации добавляются проверочные символы, формируемые в соответствии с правилами кодирования по коду Хэмминга.
В результате этих преобразований на выходе кодера образуется синхронная двоичная случайная последовательность b(t) (синхронный случайный телеграфный сигнал), состоящая из последовательности биполярных импульсов единичной высоты, причем положительные импульсы в ней соответствуют символу «0», а отрицательные - символу «1» кодовой комбинации.
Требуется:
Определить число разрядов кодовой комбинации примитивного кода , необходимое для кодирования всех L уровней квантованного сообщения.
Определить избыточность кода при использовании кодирования Хэмминга.
Записать двоичную кодовую комбинацию, соответствующую передаче j-го уровня, считая, что при примитивном кодировании на первом этапе j-му уровню ставится в соответствии двоичная кодовая комбинация, представляющая собой запись числа j в двоичной системе счисления. В полученной кодовой комбинации указать информационные и проверочные разряды.
Определить число двоичных символов, выдаваемых кодером в единицу времени Vn и длительность двоичного символа T.
;
;
; ;
j=126; Его двоичная комбинация:
0 1 1 1 1 1 1 0
В результате получаем кодовую комбинацию: 011111111000;
;
Модулятор
В модуляторе синхронная двоичная, случайная последовательность биполярных импульсов b(t) осуществляет модуляцию гармонического переносчика
Um = cos(2рft), (Um=1В, f = 100 Vk)
В зависимости от варианта возможны три вида модуляции:
Амплитудная модуляция (АМ). При АМ «0» соответствует сигнал U1(t) = 0, символу
«1» - U2(t) = Um cos(2рft).
Частотная модуляция (ЧМ).
«0» - U1(t) = Um cos2р(f-?f)t;
«1» - U2(t) = Um cos2р(f+?f)t.
Фазовая модуляция (ФМ).
«0» - U1(t) = Um cos2рft;
«1» - U2(t) = Um cos(2рft+р) = - Um cos(2рft).
Требуется:
Записать аналитическое выражение модулированного сигнала
U(t)=ц(b(t)).
Изобразить временные диаграммы модулирующего b(t) и модулированного U(t) сигналов, соответствующие передачи j-го уровня сообщения a(t).
Привести выражение и начертить график корреляционной функции модулирующего сигнала В(ф).
Привести выражение и начертить график спектральной плотности мощности модулирующего сигнала GВ(щ).
Определить ширину энергетического спектра модулирующего сигнала ?FB из условия
?FB=бVk
(где б выбирается в пределах от 1 до 3). Отложить полученное значение ?FB на графике GВ(щ).
Привести выражение и построить график энергетического спектра Gu(щ) модулированного сигнала. (В случае ЧМ частоты сигналов U1(t) и U2(t) выбирать из условия их ортогональности на интервале Т).
Определить ширину энергетического спектра ?Fu модулированного сигнала и отложить значение ?Fu на графике Gu(щ).
;
При амплитудной модуляции
; ;
График спектральной плотности мощности модулирующего сигнала GВ(f):
;
График спектральной плотности мощности модулированного сигнала GU(f).:
Канал связи
Передача сигнала U(t) осуществляется по каналу с постоянными параметрами и аддитивным флуктуационным шумом n(t) с равномерным энергетическим спектром N0/2 (белый шум).
Сигнал на выходе такого канала можно записать следующем образом:
z(t) = U(t) + n(t)
Требуется:
Определить мощность шума в полосе частот
Fk = ?Fu;
Найти отношение сигнал - шум Рс /Рш;
Найти пропускную способность канала С;
Определить эффективность использования пропускной способности канала Кс, определив ее как отношение производительности источника Н' к пропускной способности канала С.
;
, где и ;
;
;
;
;
Так как , поэтому ;
;
;
;
.
Демодулятор
В демодуляторе осуществляется оптимальная когерентная или некогерентная (в зависимости от варианта) обработка принимаемого сигнала
z(t) = U(t) + n(t)
Требуется:
Записать алгоритм оптимального приема по критерию минимума средней вероятности ошибки при равновероятных символах в детерминированном канале с белым гауссовским шумом.
Нарисовать структурную схему оптимального демодулятора для заданного вида модуляции и способа приема.
Вычислить вероятность ошибки с оптимального демодулятора.
Определить, как нужно изменить энергию сигнала, чтобы при других видах модуляции и заданном способе приема обеспечить найденное значение вероятности ошибки с.
1) Если
,
то принятым считается сигнал .
Если
,
то принятым считается сигнал .
Здесь модифицированная функция Бесселя первого рода нулевого порядка;
сигнал, сопряженный по Гильберту.
; где
отношение средней энергии сигналов на входе демодулятора к спектральной плотности мощности шума
.
4) Рассматривая некогерентный прием при АМ и ЧМ можно сделать вывод, что амплитудная модуляция требует больших энергетических затрат. Для того чтобы обеспечить найденное при АМ значение вероятности ошибки нужно уменьшить в 2 раза энергию сигнала при ЧМ:
;;
АМ:
;
ЧМ:
.
Декодер
В декодере декодирование осуществляется в два этапа. На первом этапе производится обнаружение и исправление ошибки в кодовой комбинации. Считать, что ошибка произошла в i-ом разряде. На втором этапе из нее выделяются информационные символы, а затем k - разрядная двоичная кодовая комбинация преобразуется в элемент квантованного сообщения.
Требуется:
Оценить обнаруживающую способность q0 кода Хэмминга.
Записать алгоритм обнаружения ошибок.
Определить вероятность необнаружения ошибки.
1);
Наш код исправляет одну ошибку и обнаруживает
ошибки.
2) Кодовая последовательность: 011111111000.
i=3 кодовая последовательность с ошибкой: 011111111100 .
3) ;;
n - число разрядов, ;
р - вероятность ошибки в одном разряде,
Фильтр - восстановитель
Фильтр-восстановитель - фильтр нижних частот с частотой среза Fc.
Требуется:
Указать величину Fc.
Изобразить идеальные АЧХ и ФЧХ фильтра - восстановителя.
Найти импульсную характеристику g(t) идеального фильтра - восстановителя и начертить ее график.
1);
2) Идеальная АЧХ фильтра - восстановителя имеет вид:
Идеальная ФЧХ:
3)
.
Подобные документы
Расчет основных характеристик системы передачи сообщений, включающей в себя источник сообщений, дискретизатор, кодирующее устройство, модулятор, линию связи, демодулятор, декодер и фильтр-восстановитель. Наиболее помехоустойчивый тип модуляции.
курсовая работа [278,3 K], добавлен 03.12.2014Расчет характеристик системы передачи сообщений, ее составляющие. Источник сообщения, дискретизатор. Этапы осуществления кодирования. Модуляция гармонического переносчика. Характеристика канала связи. Обработка модулируемого сигнала в демодуляторе.
контрольная работа [424,4 K], добавлен 20.12.2012Расчет основных характеристик системы передачи сообщений, включающей в себя источник сообщений, дискретизатор, кодирующее устройство, модулятор, линию связи, демодулятор, декодер и фильтр-восстановитель. Выражение для одномерной плотности вероятности.
курсовая работа [349,6 K], добавлен 23.10.2014Информационные характеристики источника сообщений и первичных сигналов. Структурная схема системы передачи сообщений, пропускная способность канала связи, расчет параметров АЦП и ЦАП. Анализ помехоустойчивости демодулятора сигнала аналоговой модуляции.
курсовая работа [233,6 K], добавлен 20.10.2014Составление обобщенной структурной схемы передачи дискретных сообщений. Исследование тракта кодер-декодер источника и канала. Определение скорости модуляции, тактового интервала передачи одного бита и минимально необходимой полосы пропускания канала.
курсовая работа [685,0 K], добавлен 26.02.2012Методы кодирования сообщения с целью сокращения объема алфавита символов и достижения повышения скорости передачи информации. Структурная схема системы связи для передачи дискретных сообщений. Расчет согласованного фильтра для приема элементарной посылки.
курсовая работа [1,1 M], добавлен 03.05.2015Расчет основных характеристик системы передачи сообщений, состоящей из источника сообщений, дискретизатора, кодирующего устройства, модулятора, линии связи, демодулятора, декодера и фильтра-восстановителя. Структура оптимального приемника сигналов.
курсовая работа [579,3 K], добавлен 02.12.2014Принципы кодирования источника при передаче дискретных сообщений. Процесс принятия приёмником решения при приёме сигнала. Расчёт согласованного фильтра. Построение помехоустойчивого кода. Декодирование последовательности, содержащей двукратную ошибку.
курсовая работа [903,9 K], добавлен 18.10.2014Расчет основных характеристик системы передачи сообщений, состоящей из источника сообщений, дискретизатора, кодирующего устройства, модулятора, линии связи, демодулятора, декодера и фильтра-восстановителя. Структурная схема оптимального демодулятора.
курсовая работа [310,0 K], добавлен 22.03.2014Методы цифровой обработки сигналов в радиотехнике. Информационные характеристики системы передачи дискретных сообщений. Выбор длительности и количества элементарных сигналов для формирования выходного сигнала. Разработка структурной схемы приемника.
курсовая работа [370,3 K], добавлен 10.08.2009