Трансформатор напряжения

Особенности работы трансформатора – устройства, предназначенного для изменения величины переменного напряжения, что является обязательным структурным элементом источника вторичного электропитания. Технические характеристики измерительных трансформаторов.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид контрольная работа
Язык русский
Дата добавления 13.12.2009
Размер файла 21,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ГОУВПО «МОРДОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.П. ОГАРЕВА»

Институт физики и химии

Кафедра радиотехники

Контрольная работа

по курсу: «Электропреобразовательные устройства»

На тему: «Трансформатор напряжения»

Выполнила: студентка 501 гр. з/о

спец. «Радиотехника»

Агафонова А.С.

Проверил: Пыресев В.Н.

Саранск, 2007

Введение

Трансформатор - устройство, предназначенное для изменения величины переменного напряжения, - является практически обязательным структурным элементом источника вторичного электропитания. При наличии первичного источника, вырабатывающего переменное напряжение, трансформатор достаточно часто включается в источник вторичного электропитания в качестве входного элемента. В этом случае трансформатор называется силовым, и его функциональное назначение заключается в преобразовании входной системы переменного напряжения (однофазной или трехфазной) в одну или несколько других систем переменных напряжений, используемых для питания соответствующих потребителей постоянного и переменного тока. В системах питания электронной аппаратуры применяют силовые трансформаторы малой мощности (не более 4 кВ-А для однофазных и 5 кВ-А для трехфазных систем переменного тока). Они в большинстве случаев работают при низких напряжениях на обмотках (до 1кВ), синусоидальной или близкой к синусоидальной форме преобразуемого напряжения и частоте, равной 50 Гц (частота промышленной сети).

Электронная аппаратура, как правило, требует наличия постоянного напряжения питания одного или нескольких уровней. Поэтому в источниках вторичного электропитания силовой трансформатор работает совместно с одним или несколькими выпрямителями - устройствами, преобразующими системы переменных напряжений в постоянные по полярности и пульсирующие по величине (выпрямленные) напряжения. Выпрямители могут быть регулируемыми и нерегулируемыми. Первые реализуются на базе управляемых полупроводниковых вентилей - тиристоров, вторые - на базе неуправляемых вентилей - диодов. Нерегулируемые выпрямители не обеспечивают стабилизацию выходных напряжений. При колебаниях напряжения источника электропитания, а также при изменении тока в любой из нагрузок, получающих питание от силового трансформатора, величина напряжения, снимаемого с нерегулируемого выпрямителя, изменяется.

Вместе с тем, нерегулируемые выпрямители широко применяются в системах питания электронной аппаратуры в случаях, когда отсутствуют жесткие требования со стороны соответствующих потребителей постоянного тока, или, если такие требования есть, когда предусмотрено включение стабилизаторов постоянного напряжения в цепи питания потребителей.

Измерительные трансформаторы

При высоких напряжениях трудно проводить измерения, поскольку высоковольтные приборы дороги и обычно громоздки; их точность подвержена воздействию статического электричества, к тому же они небезопасны. Когда ток превышает 60 А, нелегко обеспечить высокую точность амперметров из-за больших проводов и значительных ошибок, обусловленных паразитным полем концевых выводов. Кроме того, амперметры и катушки тока в высоковольтных цепях опасны для оператора. В измерительных трансформаторах тока и напряжения используются катушки напряжения на 100 В и катушки тока на 5 А. Вторичные обмотки должны быть заземлены. Если шкалы приборов не откалиброваны в коэффициентах трансформации, то показания надо умножать на соответствующий коэффициент трансформации.

Общее описание измерительных трансформаторов тока, напряжения и комбинированных трансформаторов от 72,5 КВ до 800 КВ

Для внешней изоляции измерительных трансформаторов используется высококачественная керамика. Внутренняя изоляция - кабельная бумага, пропитанная маслом в вакууме.

БУМАЖНО-МАСЛЯНАЯ ИЗОЛЯЦИЯ (внутренняя изоляция). В большинстве случаев бумага наносится механически. Специальные технические приемы, разработанные фирмой Ритц, гарантируют равномерную бумажную изоляцию высокой плотности. Ступенчатая изоляция с экранированием и защита краев кольцевыми электродами сложного профиля, оптимизированными на ЭВМ, осуществляют равномерное распределение электрического поля вдоль изолятора, между деталями с потенциалом высокого напряжения и потенциалом земли. В защите от волн перенапряжения нет необходимости.

Используемое в изоляции масло без присадки. Используется чистое минеральное масло, с великолепной выносливостью и газопоглащающими характеристиками. Масло соответствует требованиям стандарта МЭК 296 и не содержит полихлоридный бифенил (РСВ). Пробка для взятия масла встроена в цоколь или в бак трансформатора.

Контролируемые вакуумные и температурные процессы удаляют воду и газ из бумажной изоляции и масла. После последовательного процесса пропитывания создается высококачественный диэлектрик.

ИЗОЛЯТОР (внешняя изоляция). Внешняя изоляция состоит из высококачественной керамики, с окисью алюминия, коричневого или серого цвета, в соответствии со стандартом RAL 8016 или ANSI 70, керамический материал такой как С 120, в соответствии со стандартом МЭК 672. Используемые стандартные длины пути утечки соответствуют таблицам. По запросу возможны большие длины пути утечки. Фланцы изолятора изготовлены из горячеоцинкованого ковкого чугуна и подсоединены к изолятору с помощью портланд-цемента.

КОРПУС. Бак измерительных трансформаторов тока и напряжения состоит из нержавеющего алюминиевого сплава. Окрашивающие покрытия от ржавления излишни.

ИСПЫТАНИЯ НА ГЕРМЕТИЧНОСТЬ. Бак измерительных трансформаторов тока регулярно проверяется на герметичность. В данном случае используется процесс обнаружения утечки гелия чувствительным датчиком.

УПЛОТНЕНИЯ. Ритц использует только кольцевое уплотнение без стыков в хорошо обработанных желобах.

ГЕРМЕТИЗАЦИЯ ТРАНСФОРМАТОРА. Комплект первичной и вторичных обмоток с изоляцией герметично уплотнен. Изменение объема масла, вызванные изменениями температуры, компенсируются за счет одной или нескольких металлических диафрагм, их количество определяется в зависимости от объема масла, трансформатора. Металлические диафрагмы изготовлены из нержавеющей стали. Привод масла в трансформаторе осуществляется с помощью трубки. Перемещения маслорасширителя регистрируется маслоуказателем, который виден через окошко, расположенное в верхней части трансформатора.

ЗАЖИМЫ ПЕРВИЧНОЙ ОБМОТКИ. Стандартные версии зажимов первичной обмотки представляют собой плоские контактные площадки из алюминия с 4,6,8 или более отверстиями при номинальных токах до 5000 А. При необходимости могут быть изготовлены простые или двойные круглые зажимы, сделанные из меди с никелевым покрытием, например, диаметром 30 мм и длиной 130мм Возможны и другие требования заказчика.

КОРОБКА С ЗАЖИМОМИ ВТОРИЧНЫХ ОБМОТОК. Коробка зажимов очень пространственна. Съемная пластина для кабельных спальников в нижней части коробки зажимов позволяет установить кабельные трубопроводы по желанию. Вид защиты - ІР 54, в соответствии со стандартом МЭК 529

ТАБЛИЧКА С ТЕХНИЧЕСКИМИ ДАННЫМИ. Каждый трансформатор снабжен алюминиевой анодированной погодоустойчивой пластиной с нанесенными на нее техническими данными.

ЗАЗЕМЛЕНИЕ. Каждый измерительный трансформатор снабжен двумя заземляющими контактными площадками с двумя или четырьмя отверстиями диаметром 14мм. Они расположены на цоколе или баке трансформатора.

Измерительный трансформатор напряжения

КОНСТРУКЦИЯ. Измерительный трансформатор напряжения с баком и опорным изолятором. До Um=30kB первичная и вторичные обмотки и шихтованный магнитопровод без стыков расположены в цокольном, заземленном баке, сделанном из алюминия (одноступенчатый тип)/ Четыре ножки с монтажными отверстиями и коробка зажимов (также сделанная из алюминия) расположена на баке. На напряжения Um > 300kB имеются две первичные обмотки на совместном магнитопроводе, в баке на половине потенциала высокого напряжения между двумя изоляторами (двухступенчатый тип). Ножки цоколя изготовлены из оцинкованной стали.

ПЕРВИЧНАЯ ОБМОТКА. Первичная обмотка сделана из высококачественной проволоки с двойным эмалевым покрытием (Cu LL) и с дополнительным пластмассовым покрытием, устойчивым к высоким температурам (ОС). В течении процесса намотки электрический датчик контролирует качество изоляции проволок.

НЕЙТРАЛЬНЫЙ ВЫВОД. Конец первичной обмотки выведен в коробку зажимов. Вывод изолирован от потенциала земли с целью выстоять испытание на напряжение промышленной частоты при 3 кВ (1 мин), в соответствии со стандартом МЭК. По необходимости изоляция может быть увеличена, с целью выстоять испытание на напряжение промышленной частоты при 19кВ (1 мин), в соответствии со стандартами ANSI/CSA

ЗАЩИТА ОТ РАЗРЫВА. Оптимизированная, хорошо испытанная изоляция и соответствующие конструктивные характеристики сохраняют высококачественный диэлектрик более чем на 50 лет. Для защиты керамики от разрыва предприняты следующие дополнительные меры ( в случае повреждения внутренней изоляции, например, в случае удара молнии:

До Um=300кВ узел первичной и вторичных обмоток находится под изолятором, в баке, сделанном из алюминия.

Потенциальное соединение, устойчивое к току короткого замыкания, между зажимом первичной обмотки и между заземления мимагнитопровода у подножия трансформатора

Селективный, плавкий предохранитель на каждую вторичную обмотку. Такой предохранитель реагирует в случае короткого замыкания между зажимами вторичных обмоток

Разрывная диафрагма во фланце маслорасширителя

При необходимости может быть установлен комбинированный изолятор, состоящий из эпоксидной трубы с волокнистым наполнителем и силиконовых юбок, вместо керамического изолятора.

МОЩНОСТЬ И КЛАСС ТОЧНОСТИ. Трансформаторы напряжения выпускаются в соответствии с модульной системой. Обычно это соответствует всем требованиям по изменению и защите до трех обмоток и отдельной обмотки напряжения нулевой последовательности, по требованию. В случае нескольких обмоток: они влияют друг на друга, что зависит от нагрузки. Поэтому максимальная мощность класса точности всегда понимается как сумма мощности всех измерительных и защитных обмоток, за исключением обмотки напряжения нулевой последовательности. При частоте 50 Гц следующие суммарные мощности служат в качестве указателя для стандартных версий:

класс точности

максимальная нагрузка

0,1

0,2

0,5

1

75...100VA

200...300VA

400...600VA

800...1200VA

ВТОРИЧНАЯ ПРЕДЕЛЬНАЯ МОЩНОСТЬ ТЕРМИЧЕСКОЙ УСТОЙЧИВОСТИ от 2000ВА до 4000ВА. При напряжении от Um=72,5КВ до Um=420КВ также возможно обеспечить более высокую мощность, до 10000ВА и более увеличивая бак.

РАЗРЯДКА БАТАРЕИ КОНДЕНСАТОРОВ И ЛИНИЙ ЭЛЕКТРОСНАБЖЕНИЯ. Трансформаторы напряжения могут быть использованы как разрядные реакторы. Если это требуется, то необходимо указать емкость и линейное напряжение.

НОРМИРОВАННЫЙ КОЭФФИЦИЕНТ ПОВЫШЕНИЯ НАПРЯЖЕНИЯ. Возможны все стандартные значения, например 1,5Un для 30сек. или 1,9Un для 8 ч., но также 2,2Un для 8 ч.

РАЗМЕРЫ. Размеры определяются Um. Размер бака может меняться с увеличением требований мощности и/или при частотах, меньше чем 50 Гц. Изолятор может быть подобран в соответствии с желанием заказчика, относительно длины пути утечки и изоляционного расстояния.

Трансформатор напряжения серии ЗНОМ-110

Трансформатор напряжения заземляемый, однофазный, масляный предназначен для подключения измерительных приборов в сети 110 кВ. По сравнению с аналогичными трансформаторами имеет значительно меньшую массу, внутренняя изоляция трансформатора значительно более эффективно защищена от увлажнения масляным затвором.

Трансформаторы напряжения серии НАМИ

Трансформаторы напряжения трехфазные, масляные, антирезонансные предназначены для выработки сигнала измерительной информации для электрических приборов, цепей учета, автоматики, релейной защиты и сигнализации в сетях с изолированной или заземленной через дугогасящий реактор нейтралью.

Они устойчивы к феррорезонансу и однофазным замыканиям сети на землю через перемежающуюся дугу. Выдерживают все виды однофазных замыканий сети на землю без ограничения длительности замыкания.

Класс точности трансформаторов: 0,2; 0,5; 1,0; 3,0 в зависимости от нагрузки вторичных обмоток. Схема соединения обмоток эквивалентна схеме У / У / П / звезда с нулем/звезда с нулем/разомкнутый треугольник/.

С 1997 года трансформаторы выпускаются модернизированные с улучшенными весовыми и габаритными характеристиками с более рациональным расположением вводов высокого напряжения.

Сертификат соответствия РОСС RU. 01MX.B00010

Трансформаторы напряжения серии НАМИ-35

Трансформатор напряжения трехфазный, масляный, антирезонансный. Предназначен для питания измерительных цепей, цепей автоматики, телемеханики и релейной защиты о электрических сетях напряжением 35 кВ с любым режимом заземления нейтрали. Трансформатор устойчив к феррорезонансу и однофазным замыканиям сети на землю через перемежающуюся дугу. Выдерживают без повреждения все виды однофазных замыканий сети на землю без ограничения длительности замыкания.

Электрическая схема соединения обмоток эквивалентно схеме Уo /Уo /П /звезда с нулем/звезда с нулем/ разомкнутый треугольник/.

Трансформатор тремя фазными вводами 35 кВ подключается к фазам А, В и С высоковольтной сети. Нейтральный вывод первичной обмотки Х заземляется. Один трансформатор НАМИ-35 заменяет группу, состоящую из трех трансформаторов ЗНОМ-35.

Трансформаторы серии НOМ

Трансформаторы напряжения однофазные масляные. Предназначены для выработки сигнала измерительной информации для электрических и измерительных приборов, о цепях защиты и сигнализации в сетях с компенсированной и заземленной нейтралью. Класс точности 0, 5; 1, 0.

Трансформаторы серии OМ

Однофазные масляные двухобмоточные трансформаторы мощностью от 1, 25 до 10 кВА предназначены для питания цепей сигнализации и блокировки на железнодорожном транспорте.

Трансформаторы мощностью 1, 25 кВА класса напряжения 6 10 кВ предназначены для установки на опорах ЛЭП. Трансформаторы мощностью 4-10 кВА классов напряжения 6-10 кВ предназначены для установки в шкафах блочно-комплектных устройств. Трансформаторы мощностью 10 кВА класса напряжения 35 кВ предназначены для питания однофазных потребителей от контактной линии электрифицированных железных дорог на переменном токе. Регулирование напряжения осуществляется путем переключения на стороне НН.


Подобные документы

  • Анализ методов расчета источника вторичного электропитания, который является обязательным функциональным узлом практически любой электронной аппаратуры. Особенности работы магнитопровода силового трансформатора и схемы управления силовым транзистором.

    курсовая работа [1,5 M], добавлен 29.04.2010

  • Технические характеристики типового источника питания. Основные сведения о параметрических стабилизаторах. Расчет типовой схемы включения стабилизатора на К142ЕН3. Расчет источника питания с умножителем напряжения, мощности для выбора трансформатора.

    курсовая работа [1,7 M], добавлен 17.03.2015

  • Расчет выпрямительного устройства при работе на активно-емкостную нагрузку, компенсационного стабилизатора с непрерывным регулированием напряжения, мощности вторичных обмоток трансформатора. Определение расчетного габаритного параметра трансформатора.

    курсовая работа [842,2 K], добавлен 16.01.2015

  • Проектирование источника вторичного электропитания. Работа структурной схемы источника вторичного электропитания. Выбор и расчёт трансформатора. Расчет элементов силовой части преобразователя. Расчёт сетевого выпрямителя. Перечень элементов схемы.

    курсовая работа [408,5 K], добавлен 30.03.2015

  • Проектирование и рассчет вторичного источника питания (выпрямителя, трансформатора, сглаживающего фильтра, стабилизатора выходного напряжения) с заданными параметрами. Обоснование выбора электрических схем устройства. Питание от сети переменного тока.

    курсовая работа [131,8 K], добавлен 27.08.2010

  • Способы организации источников вторичного электропитания, методы их расчета и программная реализация методов. Выпрямительные устройства и ключевые стабилизаторы напряжения. Алгоритм расчета выпрямителя с индуктивной нагрузкой, параметры трансформаторов.

    отчет по практике [160,7 K], добавлен 25.02.2012

  • Обзор существующих схемных решений для построения вторичного источника питания постоянного тока. Расчет параметров компенсационного стабилизатора первого канала, выпрямителей, трансформатора, узлов индикации. Выбор сетевого выключателя и предохранителя.

    курсовая работа [765,4 K], добавлен 11.03.2014

  • Расчёт параметров нагрузки и коэффициентов трансформации трансформаторов. Исследование схемы регулирующего органа. Оценка энергетической эффективности разработанного устройства. Выбор измерительного трансформатора и элементов для системы управления.

    курсовая работа [2,1 M], добавлен 05.01.2013

  • Технические характеристики и принцип работы стабилизированного источника питания с непрерывным регулированием. Назначение функциональных элементов стабилизатора напряжения с импульсным регулированием. Расчет параметрического стабилизатора напряжения.

    реферат [630,8 K], добавлен 03.05.2014

  • Разработка и проектирование принципиальной схемы вторичного источника питания. Расчет вторичного источника питания, питающегося от сети переменного тока, для получения напряжений постоянного и переменного тока. Анализ спроектированного устройства на ЭВМ.

    курсовая работа [137,3 K], добавлен 27.08.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.