Микропроцессоры. Шинная структура связей
Предназначение микропроцессорной системы, ее характерные особенности, преимущества и недостатки. Основные сведения о микропроцессоре как узле, блоке, производящем обработку информации внутри микропроцессорной системы. Применение шинной структуры.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 14.09.2009 |
Размер файла | 1,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
БЕЛАРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
КАФЕДРА РЭС
РЕФЕРАТ
НА ТЕМУ:
«Микропроцессоры. Шинная структура связей»
Минск, 2009
Микропроцессорная система может рассматриваться как частный случай электронной системы, предназначенной для обработки входных сигналов и выдачи выходных сигналов (рис. 1.1). В качестве входных и выходных сигналов при этом могут использоваться аналоговые сигналы, одиночные цифровые сигналы, цифровые коды, последовательности цифровых кодов. Внутри системы может производится хранение, накопление сигналов (или информации),но суть не меняется. Если система цифровая (а микропроцессорные системы относятся к разряду цифровых), то входные аналоговые сигналы преобразуются в последовательности кодов выборок с помощью АЦП, а выходные аналоговые сигналы формируются из последовательности кодов выборок с помощью ЦАП. Обработка и хранение информации производятся в цифровом виде.
Характерная особенность традиционной цифровой системы состоит в том, что алгоритмы обработки и хранения информации в ней жестко связаны со схемотехникой системы. То есть изменение этих алгоритмов возможно только путем изменения структуры системы, замены электронных узлов, входящих в систему, и/или связей между ними.
Например, если нам нужна дополнительная операция суммирования, то необходимо добавить в структуру системылишний сумматор. Или если нужна дополнительная функция хранения кода в течение одного такта, то мы должны добавить в структуру еще один регистр. Естественно, это практически невозможно сделать в процессе эксплуатации, обязательно нужен новый производственный цикл проектирования, изготовления, отладки всей системы. Именно поэтому традиционная цифровая система часто называется системой на «жесткой логике».
Любая система на «жесткой логике» обязательно представляет собой специализированную систему, настроенную исключительно на одну задачу или (реже) на несколько близких, заранее известных задач. Это имеет свои бесспорные преимущества.
Во-первых, специализированная система (в отличие от универсальной) никогда не имеет аппаратурной избыточности, то есть каждый ее элемент f обязательно работает в полную силу (конечно, если эта система грамотно спроектирована ).
Во-вторых, именно специализированная система может обеспечить максимально высокое быстродействие, так как скорость выполнения алгоритмов обработки информации определяется в ней только быстродействием отдельных логических элементов и выбранной схемой путей прохождения информации. А именно логические элементы всегда обладают максимальным .на данный момент быстродействием.
Но в то же время большим недостатком цифровой системы на «жесткой логике» является то, что для каждой новой задачи ее надо проектировать и изготавливать заново. Это процесс длительный, дорогостоящий, требующий высокой квалификации исполнителей. А если решаемая задача вдруг изменяется, то вся аппаратура должна быть полностью заменена. В нашем быстро меняющемся мире это довольно расточительно.
Путь преодоления этого недостатка довольно очевиден: надо, построить такую систему, которая могла бы легко адаптироваться под любую задачу, перестраиваться с одного алгоритма работы на другой без изменения аппаратуры. И задавать тот или иной алгоритм мы тогда могли бы путем ввода в систему некой дополнительной управляющей информации, программы работы системы (рис. 1.2). Тогда система станет универсальной, или программируемой, не жесткой, а гибкой. Именно это и обеспечивает микропроцессорная система.
Но любая универсальность обязательно приводит к избыточности. Ведь решение максимально трудной задачи требует гораздо больше средств, чем решение максимально простой задачи. Поэтому сложность универсальной системы должна быть такой, чтобы обеспечивать решение самой трудной задачи, а при решении простой задачи система будет работать далеко не в полную силу, будет использовать не все свои ресурсы. И чем проще решаемая задача, тем больше избыточность, и тем менее оправданной становится универсальность. Избыточность ведет к увеличению стоимости системы, снижению ее надежности, увеличению потребляемой мощности и т.д.
Кроме того, универсальность, как правило, приводит к существенному снижению быстродействия. Оптимизировать универсальную систему так, чтобы каждая новая задача решалась максимально быстро, попросту невозможно. Общее правило таково: чем больше универсальность, гибкость, тем меньше быстродействие. Более того, для универсальных систем не существует таких задач (пусть даже и самых простых), которые бы они решали с максимально возможным быстродействием. За все приходится платить.
Таким образом, можно сделать следующий вывод. Системы на «жесткой логике» хороши там, где решаемая задача не меняется длительное время, где требуется самое высокое быстродействие, где алгоритмы обработки информации предельно просты. А универсальные, программируемые системы хороши там, где часто меняются решаемые задачи, где высокое быстродействие не слишком важно, где алгоритмы обработки информации сложные. То есть любая система хороша на своем месте.
Однако за последние десятилетия быстродействие универсальных (микропроцессорных) систем сильно выросло (на несколько порядков). К тому же большой объем выпуска микросхем для этих систем привел к резкому снижению их стоимости. В результате область применения систем на «жесткой логике» резко сузилась. Более того, высокими темпами развиваются сейчас программируемые системы, предназначенные для решения одной задачи или нескольких близких задач. Они удачно совмещают в себе как достоинства систем на «жесткой логике», так и программируемых систем, обеспечивая сочетание достаточно высокого быстродействия и необходимой гибкости. Так что вытеснение «жесткой логики» продолжается.
Основные сведения о микропроцессоре
Ядром любой микропроцессорной системы является микропроцессор или просто процессор (от английского processor). Перевести на русский язык это слово правильнее всего как «обработчик», так как именно микропроцессор -- это тот узел, блок, который производит всю обработку информации внутри микропроцессорной системы.
Остальные узлы выполняют всего лишь вспомогательные функции: хранение информации (в том числе и управляющей информации, то есть программы), связи с внешними устройствами, связи с пользователем и т.д. Процессор заменяет практически всю «жесткую логику», которая понадобилась бы в случае традиционной цифровой системы.
Он выполняет арифметические функции (сложение, умножение и т.д.), логические функции (сдвиг, сравнение, маскирование кодов и т.д.), временное хранение кодов (во внутренних регистрах), пересылку кодов между узлами микропроцессорной системы и многое другое. Количество таких элементарных операций, выполняемых процессором, может достигать нескольких сотен. Процессор можно сравнить с мозгом системы.
Но при этом надо учитывать, что все свои операции процессор выполняет последовательно, то есть одну за другой, по очереди. Конечно, существуют процессоры с параллельным выполнением некоторых операций, встречаются также микропроцессорные системы, в которых несколько процессоров работают над одной задачей параллельно, но это редкие исключения. С одной стороны, последовательное выполнение операций -- несомненное достоинство, так как позволяет с помощью всего одного процессора выполнять любые, самые сложные алгоритмы обработки информации. Но, с другой стороны, последовательное выполнение операций приводит к тому, что время выполнения алгоритма зависит от его сложности. Простые алгоритмы выполняются быстрее сложных. То есть микропроцессорная система способна сделать все, но работает она не слишком быстро, ведь все информационные потоки приходится пропускать через один-единственный узел -- микропроцессор (рис. 1.3). В традиционной цифровой системе можно легко организовать параллельную обработку всех потоков информации, правда, ценой усложнения схемы.
Итак, микропроцессор способен выполнять множество операций. Но откуда он узнает, какую операцию ему надо выполнять в данный момент? Именно это определяется управляющей информацией, программой. Программа представляет собой набор команд (инструкций), то есть цифровых кодов, расшифровав которые, процессор узнает, что ему надо делать. Программа от начала и до конца составляется человеком, программистом, а процессор выступает в роли послушного исполнителя этой программы, никакой инициативы он не проявляет (если, конечно, исправен).
Поэтому сравнение процессора с мозгом не слишком корректно. Он всего лишь исполнитель того алгоритма, который заранее составил для него человек. Любое отклонение от этого алгоритма может быть вызвано только неисправностью процессора или каких-нибудь других узлов микропроцессорной системы.
Все команды, выполняемые процессором, образуют систему команд процессора. Структура и объем системыкоманд процессора определяют его быстродействие, гибкость, удобство использования. Всего команд у процессора может быть от нескольких десятков до нескольких сотен. Система команд может быть рассчитана на узкий круг решаемых задач (у специализированных процессоров) или на максимально широкий круг задач (у универсальных процессоров). Коды команд могут иметь различное количество разрядов (занимать от одного до нескольких байт).
Каждая команда имеет свое время выполнения, поэтому время выполнения всей программы зависит не только от количества команд в программе, но и от того, какие именно команды используются.
Для выполнения команд в структуру процессора входят внутренние регистры, арифметико-логическое устройство (АЛУ, ALU -- Arithmetic Logic Unit), мультиплексоры, буферы, регистры и другие узлы. Работа всех узлов синхронизируется общим внешним тактовым сигналом процессора. То есть процессор представляет собой довольно сложное цифровое устройство (рис. 1.4).
Впрочем, для разработчика микропроцессорных систем информация о тонкостях внутренней структуры процессора не слишком важна. Разработчик должен рассматривать процессор как «черный ящик», который в ответ на входные и управляющие коды производит ту или иную операцию и выдает выходные сигналы. Разработчикунеобходимо знать систему команд, режимы работы процессора, а также правила взаимодействия процессора с внешним миром или, как их еще называют, протоколы обмена информацией. О внутренней структуре процессора надо знать только то, что необходимо для выбора той или иной команды, того или иного режима работы.
Шинная структура связей
Для достижения максимальной универсальности и упрощения протоколов обмена информацией в микропроцессорных системах применяется гак называемая шинная структура связей между отдельными устройствами, входящими в систему. Суть шинной структуры связей сводится к следующему.
При классической структуре связей (рис. 1.5) все сигналы и коды между устройствами передаются по отдельным линиям связи. Каждое устройство, входящее в систему, передает свои сигналы и коды независимо от других устройств. При этом в системе получается очень много линий связей и разных протоколов обмена информацией.
При шинной структуре связей (рис. 1.6) все сигналы между устройствами передаются по одним и тем же линиям связи, но в разное время (это называется мультиплексированной передачей). Причем передача по всем линиям связи может осуществляться в обоих направлениях (так называемая двунаправленная передача). В результате количество линий связи существенно сокращается, а правила обмена (протоколы) упрощаются. Группа линий связи, по которым передаются сигналы или коды как раз и называется шиной (англ. bus).
Понятно, что при шинной структуре связей легко осуществляется пересылка всех информационных потоков в нужном направлении, например, их можно пропустить через один процессор, что очень важно для микропроцессорной системы. Однако при шинной структуре связей вся информация передается по линиям связи последовательно во времени, по очереди, что снижает быстродействие системы по сравнению с классической структурой связей.
Большое достоинство шинной структуры связей состоит в том, что все устройства, подключенные к шине, должны принимать и передавать информацию по одним и тем же правилам (протоколам обмена информацией по шине). Соответственно, все узлы, отвечающие за обмен с шиной в этих устройствах, должны быть единообразны, унифицированы.
Существенный недостаток шинной структуры связан с тем, что все устройства подключаются к каждой линии связи параллельно. Поэтому любая неисправность любого устройства может вывести из строя всю систему, если она портит линию связи. По этой же причине отладка системы с шинной структурой связей довольно сложна и обычно требует специального оборудования.
В системах с шинной структурой связей применяют все три существующие разновидности выходных каскадовцифровых микросхем:
* стандартный выход или выход с двумя состояниями (обозначается 2С, 2S, реже ТТЛ, TTL);
* выход с открытым коллектором (обозначается ОК, ОС);
* выход с тремя состояниями или (что то же самое) с возможностью отключения (обозначается ЗС, 3S).
Упрощенно эти три типа выходных каскадов могут быть представлены в виде схем на рис. 1.7.
У выхода 2С два ключа замыкаются по очереди, что соответствует уровням логической единицы (верхний ключ замкнут) и логического нуля (нижний ключ замкнут). У выхода ОК замкнутый ключ формирует уровень логического нуля, разомкнутый -- логической единицы. У выхода ЗС ключи могут замыкаться по очереди (как в случае 2С), а могут размыкаться одновременно, образуя третье, высокоимпедансное, состояние. Переход в третье состояние (Z-состояние) управляется сигналом на специальном входе EZ.
Выходные каскады типов ЗС и ОК позволяют объединять несколько выходов микросхем для получения мультиплексированных (рис. 1.8) или двунаправленных (рис. 1.9) линий.
При этом в случае выходов ЗС необходимо обеспечить, чтобы на линии все на работал только один активный выход, а все остальные выходы находились бы в это время в третьем состоянии, иначе возможны конфликты.
Объединенные выходы ОК могут работать все одновременно, без всяких конфликтов. Типичная структура микропроцессорной системы приведена на рис. 1.10. Она включает в себя три основных типа устройств:
* процессор;
* память, включающую оперативную память (ОЗУ, RAM -- Random Access Memory) и постоянную пам'ять (ПЗУ, ROM --Read Only Memory), которая служит для хранения данных и программ;
* устройства ввода/вывода (УВВ, I/O -- Input/Output Devices), служащие для связи микропроцессорной системы с внешними устройствами, для приема (ввода, чтения, Read) входных сигналов и выдачи (вывода, записи, Write) выходных сигналов.
Все устройства микропроцессорной системы объединяются общей системной шиной (она же называется еще системной магистралью или каналом). Системная магистраль включает в себя четыре основные шины нижнего уровня:
* шина адреса (Address Bus);
* шина данных (Data Bus);
* шина управления (Control Bus);
* шина питания (Power Bus).
Шина адреса служит для определения адреса (номера) устройства, с которым процессор обменивается информацией в данный момент. Каждому устройству (кроме процессора), каждой ячейке памяти в микропроцессорной системе присваивается собственный адрес. Когда код какого-то адреса выставляется процессором на шине адреса, устройство, которому этот адрес приписан, понимает, что ему предстоит обмен информацией. Шина адресаможет быть однонаправленной или двунаправленной.
Шина данных -- это основная шина, которая используется для передачи информационных кодов между всеми устройствами микропроцессорной системы. Обычно в пересылке информации участвует процессор, который передает код данных в какое-то устройство или в ячейку памяти или же принимает код данных из какого-то устройства или из ячейки памяти. Но возможна также и передача информации между устройствами без участия процессора. Шина данных всегда двунаправленная.
Шина управления в отличие от шины адреса и шины данных состоит из отдельных управляющих сигналов.
Каждый из этих сигналов во время обмена информацией имеет свою функцию. Некоторые сигналы служат для стробирования передаваемых или принимаемых данных (то есть определяют моменты времени, когда информационный код выставлен на шину данных). Другие управляющие сигналы могут использоваться для подтверждения приема данных, для сброса всех устройств в исходное состояние, для тактирования всех устройств и т.д. Линии шины управления могут быть однонаправленными или двунаправленными. Наконец, шина питания предназначена не для пересылки информационных сигналов, а для питания системы.
Она состоит из линий питания и общего провода. В микропроцессорной системе может быть один источник питания (чаще +5 В) или несколько источников питания (обычно еще 5 В, +12 В и -12 В). Каждому напряжению питания соответствует своя линия связи. Все устройства подключены к этим линиям параллельно.
Если в микропроцессорную систему надо ввести входной код (или входной сигнал), то процессор по шине адреса обращается к нужному устройству ввода/вывода и принимает по шине данных входную информацию. Если из микропроцессорной системы надо вывести выходной код (или выходной сигнал), то процессор обращается по шине адреса к нужному устройству ввода/вывода и передает ему по шине данных выходную информацию.
Если информация должна пройти сложную многоступенчатую обработку, то процессор может хранить промежуточные результаты в системной оперативной памяти. Для обращения к любой ячейке памяти процессор выставляет ее адрес на шину адреса и передает в нее информационный код по шине данных или же принимает из нее информационный код по шине данных. В памяти (оперативной и постоянной) находятся также и управляющие коды (команды выполняемой процессором программы), которые процессор также читает по шине данных с адресацией по шине адреса. Постоянная память in пользуется в основном для хранения программы начального пуска микропроцессорной системы, которая выполняется каждый раз после включения питания. Информация в нее заносится изготовителем раз и навсегда. Таким образом, в микропроцессорной системе все информационные коды и коды команд передаются по шинам последовательно, по очереди. Это определяет сравнительно невысокое быстродействие микропроцессорной системы.
Оно ограничено обычно даже не быстродействием процессора (которое тоже очень важно) и не скоростью обмена по системной тине (магистрали), а именно последовательным характером передачи информации по системной шине (магистрали).
Важно учитывать, что устройства ввода/вывода чаще всего представляют собой устройства на «жесткой логике». На них может быть возложена часть функций, выполняемых микропроцессорной системой. Поэтому у разработчика всегда имеется возможность перераспределять функции системы между аппаратной и программной реализациями оптимальным образом. Аппаратная реализация ускоряет выполнение функции, но имеет недостаточную гибкость. Программная реализация значительно медленнее, но обеспечивает высокую гибкость. Аппаратная реализация функций увеличивает стоимость системы и ее энергопотребление, программная -- не увеличивает. Чаще всего применяется комбинирование аппаратных и программных функций.
Иногда устройства ввода/вывода имеют в своем составе процессор, то есть представляют собой небольшую специализированную микропроцессорную систему. Это позволяет переложить часть программных функций на устройства ввода/вывода, разгрузив центральный процессор системы.
ЛИТЕРАТУРА
1. Гук М., Юров В. Процессоры Pentium 4 и другие. - СПб.: Питер, 2003. - 512 с.
2. Колесниченко О.В., Шишигин И.В. Аппаратные средства РС. - 6-е изд., перераб. И доп. - Спб.: БХВ-Петербург, 2004. - 1024 с.
3. Корнеев В.В., Киселев А.В. Современные микропроцессоры. - 3-е изд., перераб. И доп. - Спб.: БХВ-Петербург, 2003. - 448 с.
4. Основы микропроцессорной техники / Новиков Ю.В., Скоробогатов П.К. , М.: ИНТУИТ.РУ. «Интернет-Университет Информационных Технологий», 2003. - 440 с.
5. Assembler / В. Юров. - Спб.: Питер, 2001. - 624 с.
Подобные документы
Аппаратные принципы построения устройств микропроцессорной техники и приобретение практических навыков по разработке микропроцессорных систем. Техническая характеристика микропроцессора ATmega и анализ микросхемы памяти. Схема микропроцессорной системы.
курсовая работа [1,6 M], добавлен 19.11.2011Разработка микропроцессорной системы управления технологическим объектом. Выбор и расчет элементов системы, разработка ее программного обеспечения. Составление структурных, функциональных и принципиальных схем микроконтроллеров семейства MCS-51.
курсовая работа [579,0 K], добавлен 20.09.2012Общее описание микропроцессорной системы: генератор тактовых импульсов, системный контроллер, шинный формирователь шины адреса, оперативное запоминающее устройство. Синтез электрической принципиальной схемы. Карта распределения адресного пространства.
курсовая работа [1,2 M], добавлен 13.10.2013Изобретение и развитие микропроцессоров. Микроконтроллеры различных типов. Принципиальная схема микропроцессорной системы. Выбор датчиков Расчет основных элементов МПС. Составление алгоритма работы схемы, программы для нее. Сборка МПС в программе Proteus.
курсовая работа [387,3 K], добавлен 25.04.2016Проект структурной схемы микропроцессорной системы управления. Блок-схема алгоритма работы МПС; создание программы, обеспечивающей его выполнение. Распределение области памяти под оперативное и постоянное запоминающие устройства. Оценка ёмкости ПЗУ и ОЗУ.
курсовая работа [467,9 K], добавлен 21.05.2015Порядок описания и разработки структурной и функциональной схемы микропроцессорной системы на основе микроконтроллера К1816ВЕ31. Обоснование выбора элементов, разработка принципиальной схемы данной системы, программы инициализации основных компонентов.
курсовая работа [260,4 K], добавлен 16.12.2010Разработка энергосберегающей системы управления трехфазным асинхронным двигателем главного движения токарного станка. Блок системы управления и датчик скорости в составе устройства. Анализ структуры микропроцессорной системы. Выбор конструкции устройства.
дипломная работа [2,2 M], добавлен 20.07.2014Вольт-амперные характеристики полевых транзисторов. Структурное проектирование устройства, выполняющего цифровую обработку информации. Основные характеристики выбранного микроконтроллера. Преобразователь ток-напряжение и интегрирующий усилитель.
контрольная работа [822,5 K], добавлен 07.08.2013Изучение устройства связи с датчиком и исполнительными механизмами, разработка блока памяти объёмом 80 кб. Характеристика программ, обеспечивающих выполнение заданного алгоритма и алгоритма обмена. Оценка микропроцессорной системы по аппаратным затратам.
практическая работа [154,1 K], добавлен 14.11.2011Выбор программного обеспечения. Построение функциональной модели. Тестирование программного описания автомата. Проектирование общей схемы сборки проекта из отдельных фрагментов. Нормы затрат на проектирование и внедрение микропроцессорной системы.
дипломная работа [348,1 K], добавлен 05.05.2015