Розрахунок параметрів цифрових антенних решіток

Поліпшення характеристик розрізнення при використанні проекційних методів та процедур. Проекційні методи надрелеївського розрізнення при нескінченно великій довжині вибірки сигналів. Математичне моделювання цифрової обробки сигналів в системі зв’язку.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык украинский
Дата добавления 11.08.2009
Размер файла 298,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

РОЗРАХУНОК ПАРАМЕТРІВ ЦИФРОВИХ АНТЕННИХ РЕШІТОК (ЦАР)

2.1 Теоретичні засади ЦДУ на базі ЦАР

При роботі системи зв'язку одночасно з кількома кореспондентами необхідно орієнтувати основні промені ДС антенної системи в заданих напрямках. До того ж, постійні зміни параметрів тропосфери обумовлюють необхідність моніторингу оптимального напрямку прийому та енергетичного потенціалу сигналу. Тому основною задачею, що має вирішуватись при обробці інформації в системи зв'язку з ЦДУ на базі ЦАР, є вимір напрямків приходу сигналів. Ця задача математично еквівалентна обчисленню просторового спектра поля випромінювання джерел з подальшою оцінкою положення його локальних максимумів. Безпосередньо для її розв'язання крім класичних існують так звані проекційні методи та процедури спектрального аналізу, пов'язані з оберненням кореляційної матриці (КМ) [20, 21]. Всі вони мають високу розрізнювальну здатність.

На цей час застосовується лише обмежена частина вказаних методів. У деяких випадках вони недостатньо ефективні та далеко неоптимальні, що пов'язано з відносною складністю їхньої реалізації, апаратно-програмними витратами, а також обмеженістю покладених на них задач. Однак, в світі постійно ведуться дослідження з розширення спектра прикладного використання процедур обробки сигналів на базі зазначених методів, зі збільшенням їхньої кількості, а також поліпшення притаманних їм обчислювальних характеристик і точності. Зупинимось докладніше на тих методах, які використовуються досить часто.

Для спрощення аналітичних викладень доцільно обмежитися розглядом лінійної еквідистантої ЦАР. Як відомо [22], плоска хвиля, що поширюється з напрямку візування на m-го кореспондента (), в точках розташування антенних елементів (АЕ) антенної решітки характеризується вектором фазування [20]:

, (2.1)

де - кількість каналів ЦАР, - узагальнена кутова координата.

Матриця амплітудно-фазового розподілу (АФР), який створений сигналами від М кореспондентів на розкриві лінійної антенної решітки, складається з стовпців (2.1) і має вигляд [20]:

, (2.2)

тобто, в m-му стовпці при відомій геометрії решітки міститься інформація про кутову координату m-го кореспондента.

Стосовно обробки сигналів у ЦАР, аналогом класичного спектрального оцінювання є метод Бартлета [20, 22], який спирається на формування функції:

, (2.3)

де - функція, що характеризує зміну потужності результуючого сигналу на виході системи обробки, в залежності від кутового положення m-го кореспондента, яке відраховується від нормалі ЦАР до її розкриву,

- вимірювана координата (у залежності від просторової орієнтації променя решітки: азимут або кут місця),

- матриця пеленгаційних характеристик (ПХ), що характеризує фазовий розподіл, який відповідає сканованому напрямку ,

- операція ермітового сполучення,

- оцінка кореляційної матриці сигналів на виходах приймальних каналів ЦАР.

Оцінка КМ записується у вигляді [20, 22]:

, (2.4)

де - вектор вихідних сигналів приймальних каналів решітки, що відповідає s-му відліку;

S - довжина вибірки сигналів на виходах приймальних каналів ЦАР протягом часу спостереження.

Для уникнення сингулярності КМ (2.4) довжина вибірки повинна задовольняти умові [23], інакше замість (2.4) необхідно використовувати вираз

.

Згідно з виразом (2.3), оцінку за методом Бартлета можна представити у вигляді [24]:

, (2.5)

де - вектор оптимальних оцінок кутових координат кореспондентів.

Потенційні можливості (2.5) з розрізнення ДВ обмежені шириною основного променя ДС антени. Підвищення ефективності методу (2.5) може бути досягнуто тільки шляхом збільшення фізичних розмірів ЦАР, що не завжди можливо.

Між тим, поліпшення характеристик розрізнення при використанні проекційних методів та процедур, пов'язаних з обертанням КМ, у порівнянні з методом (2.5) істотно залежить від відношення сигнал/шум прийнятих сигналів. При малих значеннях відношення сигнал/шум і обмеженому часі спостереження показники якості методів надрелеївського розрізнення не перевищують аналогічних характеристик методу Бартлета. Для односигнальної ситуації помилки виміру кутових координат кореспондентів при використанні деяких методів надрелеївського розрізнення вище, ніж у класичних методів [20, 22]. Тільки у випадку багатогосигнального режиму прийому, коли в основному промені ДС ЦАР знаходяться кілька кореспондентів, зазначені процедури надрелеївського розрізнення за умов достатнього відношення сигнал/шум, більш ефективні. Крім того, при використанні розглянутих методів підвищуються вимоги до ідентичності характеристик спрямованості каналів ЦАР [20].

Метод Кейпона [20] - найбільш відомий з тих, що спираються на формування зворотної КМ. Спектральну оцінку за цим методом можна записати у вигляді [13]:

. (2.6)

За можливостями розрізнення некорельованих у часі сигналів вона займає проміжне положення між оцінками, які отримані за методом Бартлета і проекційними методами надрелеївського розрізнення.

Інший метод, так званого лінійного пророкування, був спочатку запропонований для аналізу часових рядів, і відомий також за назвою методу максимальної ентропії або авторегресійного методу [20]. Вираз для оцінки за методом максимальної ентропії для випадку лінійної ЦАР має вигляд [24]:

, (2.7)

де - М-вимірний вектор з нульовими компонентами за винятком k-ого, який дорівнює одиниці.

Вектор мінімізує середньоквадратичну помилку прогнозування вихідного сигналу k-го елемента АР по зваженій лінійній комбінації вихідних сигналів інших приймальних елементів решітки [20],

, (2.8)

тут E{ } - операція статистичного усереднення.

До недоліку розглянутого методу варто віднести наявність великої кількості помилкових пеленгів ПХ при малому обсязі сигнальної вибірки. Їхню появу можна пояснити тим, що в співвідношенні (2.7) порядок моделі лінійного пророкування істотно перевищує кількість кореспондентів, що пеленгуються. Іншими словами, помилкові пеленги породжуються зайвими параметрами вектора .

Реалізація низки інших методів надрелеївського розрізнення передбачає операцію розподілу власних значень КМ на сигнальні та шумові (оцінка числа сигнальних власних значень еквівалентна оцінці кількості сигналів кореспондентів, що пеленгуються [20]). Такі методи відомі в літературі за назвою вже згаданих проекційних методів, тому що їхня реалізація передбачає проекцію вектора вхідних сигналів на підпростір або сигнальних, або шумових власних векторів КМ [20, 24].

До числа найбільш відомих проекційних методів надрелеївського розрізнення відноситься метод MUSIC [20]. Як варіант, оцінка за методом MUSIC може бути представлена у вигляді [24]:

, (2.9)

де - власні вектори, що відповідають сигнальним (найбільшим) власним значенням КМ, або [24]:

, (2.10)

де - власні вектори, що відповідають шумовим (найменшим) власним значенням КМ.

Встановлено, що MUSIC мало чутливий до точності апроксимації фонових шумів. Згідно [25], середньоквадратична помилка виміру кута, виконаного за методами MUSIC, зворотно пропорційна кількості S часових відліків.

До числа проекційних методів можна умовно віднести й метод максимуму правдоподібності, оскільки його реалізація також передбачає використання проекційного апарату. Цей метод дозволяє реалізувати на практиці близькі до потенційних можливості виміру кутових координат кореспондентів на базі ЦАР по точності та розрізнювальній здатності [20] й полягає у формуванні оцінки за виразом:

, (2.11)

де - оцінка матриці .

Алгоритм, що забезпечує реалізацію розглянутого методу, зводиться до пошуку глобального екстремуму функції багатьох змінних (по кількості кореспондентів, що пеленгуються, і вимірюваних кутових координат) шляхом підбору матриці амплітудно-фазового розподілу.

Згідно [23], (2.11) забезпечує, на відміну від раніше розглянутих проекційних методів, розрізнення при великому відношенні сигнал/шум не тільки некорельованих, а й корельованих сигналів. Це є дуже важливим для забезпечення цифрової обробки сигналів.

Проекційні методи надрелеївського розрізнення при нескінченно великій довжині вибірки сигналів, за якою оцінюються структурні компоненти КМ (тобто необмеженому часі спостереження, що еквівалентно нескінченно великій енергії корисного сигналу), теоретично мають нескінченно високу здатність розрізнення сигналів [20]. Однак можливості з кутового розрізнення кореспондентів і точності виміру їхніх кутових координат, істотно залежать від помилок оцінювання кількості сигналів. Занижена оцінка числа кореспондентів призводить до їхнього нерозрізнення, зниження точності виміру кутових координат і видачі помилкових пеленгів. Завищена оцінка числа кореспондентів також зумовлює виявлення помилкових напрямків (як наслідок цього, додатково підвищуються обчислювальні витрати реалізації методів) і зниження точності виміру кутових координат справжніх кореспондентів.

При практичній реалізації методів спектрального аналізу найважливіше значення має чутливість до розходжень амплітудних і фазових характеристик окремих каналів тракту прийому, рівня власних шумів, відхилення у положеннях АЕ від їх розрахункових значень, кількості АЕ, корельованості і рівня сигналів від кореспондентів, довжини початкові вибірки, що використовується для оцінки КМ.

Розглянуті методи Кейпона, лінійного пророкування та MUSIC на відміну від максимуму правдоподібності не забезпечують розрізнення когерентних сигналів навіть при наявності запасу відношення сигнал/шум та не дозволяють проводити вимір потужності прийнятих сигналів [26]. Таким чином, для СМЗ з ЦДУ найбільш прийнятним з розглянутих методів розрізнення сигналів є метод максимуму правдоподібності.

2.2 Розрахунок параметрів ЦАР

Формування відгуку приймальної ЦАР здійснюється, як відомо, шляхом проведення операції аналого-цифрового перетворення в кожному каналу. Існуючі можливості обчислювальної техніки дозволяють здійснювати комплексне представлення сигналів, що підвищує точність процедур оцінювання їхніх параметрів [27-29]. Для спрощення аналітичних викладень необхідно ввести деякі обмеження.

В якості базової розглядається лінійна еквідистантна ЦАР (рис. 2.1) в режимі роботи на прийом, що містить R каналів з неспрямованими АЕ, які розташовані з кроком решітки d. Фазовий центр ЦАР співпадає з її геометричним центром, який прийнятий за початок координат. Кількість каналів, вплив яких враховується в одній площині поляризації, дорівнює К, причому .

Рис. 2.1. Геометрія лінійної ЦАР.

Діючий на ЦАР сигнал є вузькосмуговим в просторово-часовому розумінні, тобто інтервал кореляції комплексної огинаючої сигналу суттєво перевищує часовий інтервал між моментами приходу сигналу в найбільш рознесених точках апертури решітки.

Припустимо, що на ЦАР впливають М сигналів (), причому m-ому сигналу (m=) відповідає хвиля з плоским фронтом, яка надходить на полотнину антенної решітки з напрямку ( - кут між нормаллю в початку координат та напрямком приходу сигналу). В якості обмеження також розглядається ситуація однокоординатної кутової оцінки.

Перейдемо безпосередньо до синтезу моделі відгуку антенної решітки. Для випадку однокординатної ситуації і одновідлікового виміру напрямку () комплексну напругу в r-ому каналі () можна представити в розгорнутому вигляді [9]:

,

де - просторова частота,

- комплексна пеленгаційна характеристика (ПХ) k-го каналу, яка залежить від напрямку,

- комплексна амплітуда m-го сигналу,

d - відстань між антенними елементами (крок) ЦАР,

- довжина хвилі,

- оцінка напрямку приходу m-го сигналу,

М - кількість сигналів,

- кількість каналів ЦАР.

Згідно [30], аналітична модель відгуку лінійної решітки у матричній формі при одновідліковому вимірі напрямків приходу М сигналів має вигляд:

, (2.12)

де - матриця ПХ R каналів у напрямках М сигналів,

- вектор комплексних амплітуд М сигналів,

U - вектор комплексних напруг приймальних каналів ЦАР,

2.3 Математичне моделювання ЦАР

З метою підтвердження основних положень щодо використання ЦАР в системі мобільного зв'язку було проведено математичне моделювання цифрової обробки сигналів в системі зв'язку.

Для спрощення моделі вводилась низка припущень. Антенна система базової станції складається з 3-секторних ЦАР. Кожен сектор перекриває 1200. В якості секторної антенної решітки розглядається еквідистантна лінійна ЦАР в режимі роботи на прийом, що містить R каналів з неспрямованими АЕ, які розташовані з кроком решітки d. Фазовий центр ЦАР співпадає з її геометричним центром, який прийнятий за початок координат. При цьому обробка сигналів в кожній секторній ЦАР проводиться окремо. Процеси ідентифікації кутових координат джерел випромінювання за результатами обробки всіх секторних ЦАР, об'єднання та декодування інформації не розглядається.

Діючий на ЦАР сигнал є вузькосмуговим в просторово-часовому розумінні, тобто інтервал кореляції комплексної огинаючої сигналу суттєво перевищує часовий інтервал між моментами приходу сигналу в найбільш рознесених точках апертури решітки.

Припустимо, що на ЦАР впливають М сигналів (), причому m-ому сигналу (m=) відповідає хвиля з плоским фронтом, яка надходить на полотнину антенної решітки з напрямку ( - кут між нормаллю в початку координат та напрямком приходу сигналу). В якості обмеження також розглядається ситуація однокоординатної кутової оцінки.

Припустимо, що АЧХ приймальних каналів ЦАР мають форму, близьку до прямокутної; коефіцієнти передачі всіх приймальних каналів однакові і дорівнюють одиниці; власні шуми на виходах цих каналів некорельовані із сигналами, статистично незалежні і мають однакову дисперсію. Крім того, будемо вважати, що щільності ймовірностей миттєвих значень власних шумів решітки розподілені за нормальним законом, ширина спектра ДВ шумових сигналів істотно перевищує смугу пропускання каналів, інтервал кореляції сигналів на виходах приймальних каналів решітки, що відповідають одному й тому ж кореспонденту, значно перевищує максимальний час затримки по каналах решітки. Лінійні розміри антенних решіток однакові. Наявністю та впливом власних та зовнішніх шумів будемо нехтувати.

Для зручності при моделюванні в спеціалізованому пакеті Mathcad-2001 блоки вводу початкових та вихідних даних розміщені за розрахунковим блоком (використовується операція глобального присвоєння). Вихідні дані виводяться у вигляді графіків. Кількість ДВ на перевищує 8. Для збільшення їх кількості необхідно змінити розмірність матриць: кутових координат ДВ та відношення сигнал/шум.

При моделюванні виконувались наступні етапи:

Ввід початкових даних: - довжина хвилі, d - крок решітки, R - кількість каналів ЦАР, М - кількість ДВ, матриця кутових координат ДВ.

Розрахунок амплітудно-фазового розподілу (2.1, 2.2).

Розрахунок КМ (2.4).

Формування спектральних оцінок за методами Бартлетта (2.5) та MUSIC (2.10).

З урахуванням розглянутих положень була розроблена програма, яка наведена в додатку. При її використанні були підтверджені основні положення про властивості ЦДУ на базі ЦАР.

Згідно п.1.3. для антенної решітки кількість каналів дорівнює - . Отримані спектральні оцінки за методами Бартлетта (синя суцільна лінія) та MUSIC (чорна крапкова лінія) наведені на рис. 2.2-4. При цьому аналізувалось кілька ситуацій прийому рівнопотужних сигналів від 2 кореспондентів.

Рис. 2.2. Спектральні оцінки за методами Бартлета (синя суцільна лінія) та MUSIC (чорна крапкова лінія) для кореспондентів з кутовими координатами -6 та 200.

Рис. 2.3. Спектральні оцінки за методами Бартлета (синя суцільна лінія) і MUSIC (чорна крапкова лінія) для кореспондентів з кутовими координатами: -6 та 60.

У першому випадку (рис. 2.2) кутові координати відносно нормалі антенної решітки вибирались таким чином, щоб забезпечити розрізнення сигналів від кореспондентів за методом Бартлета (відповідно -6 та 200).

У другому випадку (рис. 2.3) розглядалась ситуація нерозрізнення сигналів від кореспондентів за методом Бартлета, що приводить до ситуації невизначеності напрямків на кореспондентів та їх кількості. При цьому отримана спектральна оцінка за методом MUSIC дозволяє чітко визначити кутові координати кореспондентів.

Рис. 2.4. Спектральні оцінки за методами Бартлета (синя суцільна лінія) та MUSIC (чорна крапкова лінія) для кореспондентів з кутовими координатами -6 та 20.

З метою збільшення розрізнювальної спроможності при використанні спектральних оцінок за методам Бартлета необхідно збільшувати кількість АЕ ЦАР. Для прикладу розглядалась ЦАР, що складалась з 16 АЕ (рис. 2.4).

Таким чином, проведене моделювання ЦОС в одній секторній ЦАР антенної системи підтвердило основні властивості спектральних оцінок та процесу ЦДУ в цілому.

Висновки

1. З метою підтвердження основних положень щодо використання ЦАР в системі мобільного зв'язку було проведено математичне моделювання в спеціалізованому пакеті Mathcad-2001 цифрової обробки сигналів в системі зв'язку. Для спрощення моделі вводилась низка припущень.

2. Отримані спектральні оцінки за методами Бартлетта та MUSIC. При цьому аналізувалось кілька ситуацій прийому рівнопотужних сигналів від 2 кореспондентів. У першому випадку кутові координати відносно нормалі антенної решітки вибирались таким чином, щоб забезпечити розрізнення сигналів від кореспондентів за методом Бартлета. У другому випадку розглядалась ситуація нерозрізнення сигналів від кореспондентів за методом Бартлета, що призводить до ситуації невизначеності напрямків на кореспондентів та їх кількості. При цьому отримана спектральна оцінка за методом MUSIC дозволяє чітко визначити кутові координати кореспондентів.

3. Проведене моделювання ЦОС в одній секторній ЦАР антенної системи підтвердило основні властивості спектральних оцінок та процесу ЦДУ в цілому. З метою збільшення розрізнювальної спроможності при використанні спектральних оцінок за методам Бартлета необхідно збільшувати кількість АЕ ЦАР.


Подобные документы

  • Типи задач обробки сигналів: виявлення сигналу на фоні завад, розрізнення заданих сигналів. Показники якості вирішення задачі обробки сигналів. Критерії оптимальності рішень при перевірці гіпотез, оцінюванні параметрів та фільтруванні повідомлень.

    реферат [131,8 K], добавлен 08.01.2011

  • Структурна схема системи передачі повідомлень. Розрахунок параметрів кодера і декодера простого коду, параметрів АЦП та ЦАП, інформаційних характеристик джерел повідомлень та первинних сигналів, оцінінювання ефективності систем зв'язку з кодуванням.

    методичка [205,1 K], добавлен 27.03.2010

  • Розрізнення як найголовніший параметр якості при передаванні документів, існуючі режими розрізнення факс-апаратів. Історія стандартизації факсимільного зв'язку. Опис алгоритмів стиснення інформації та опціональність корекції помилок при передачі факсів.

    реферат [14,3 K], добавлен 14.11.2010

  • Структура тракту передачі сигналів. Розрахунок частотних характеристик лінії зв’язку, хвильового опору і коефіцієнта поширення лінії. Розрахунок робочого згасання тракту передачі і потужності генератора, вхідного та вихідного узгоджуючого трансформатора.

    курсовая работа [2,2 M], добавлен 25.11.2014

  • Функціональна та принципова схеми пристрою обробки електричних сигналів, виводи операційного підсилювача. Розрахунок автогенератора гармонійних коливань, вибір номіналів опорів та конденсаторів. Схема ємнісного диференціюючого кола генерування імпульсів.

    курсовая работа [525,3 K], добавлен 23.01.2011

  • Поняття дискретного сигналу. Квантування неперервних команд за рівнем у пристроях цифрової обробки інформації, сповіщувально-вимірювальних системах, комплексах автоматичного керування тощо. Кодування сигналів та основні способи побудови їх комбінацій.

    реферат [539,1 K], добавлен 12.01.2011

  • Аналіз статистичних характеристик і параметрів переданого повідомлення. Характеристики і параметри сигналів широко-імпульсної модуляції. Врахування перешкод в лінії зв’язку. Розрахунок характеристик приймача. Вибір схем модулятора і демодулятора.

    курсовая работа [173,3 K], добавлен 22.11.2009

  • Перетворення сигналів і виділення інформації. Властивості оцінок, методи їх одержання. Характеристики оцінок початкових моментів. Заміна "усереднення по реалізаціях" "усередненням за часом". Оцінка математичного очікування по декількох реалізаціях.

    курсовая работа [316,2 K], добавлен 24.06.2011

  • Загальні відомості про системи передачі інформації. Процедури кодування та модуляції. Використання аналогово-цифрових перетворювачів. Умови передачі різних видів сигналів. Розрахунок джерела повідомлення. Параметри вхідних та вихідних сигналів кодера.

    курсовая работа [571,5 K], добавлен 12.12.2010

  • Роль сигналів у процесах обміну інформацією. Передавання сигналів від передавального пункту до приймального через певне фізичне середовище (канал зв'язку). Використання електромагнітних хвиль високих частот. Основні діапазони електромагнітних коливань.

    реферат [161,8 K], добавлен 05.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.