Биполярные транзисторы

Понятие биполярного транзистора, его структура и общие принципы работы. Характеристика главных параметров, их расчеты и изменения. Особенности схем включения с общим эмиттером, коллектором, базой, их ключевых режимов и соотношения данных в них.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 01.05.2009
Размер файла 26,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Биполярные транзисторы

1. Общие принципы

Биполярные транзисторы - это приборы на основе трехслойной структуры. Существуют две структуры, которые представлены на рис. 15а, 15б. Структура транзистора имеет три области с тремя чередующимися типами проводимости. В зависимости от порядка чередования областей различают транзисторы p-n-p- и n-p-n типа. Они имеют два p-n перехода. Существуют еще полевые транзисторы, имеющие другие структуры.

Транзистор является управляемым прибором. Управляющим выводом является база Б, который делается от среднего слоя. Другие два вывода называются эмиттер Э и коллектор К. Управляющей цепью является переход база-эмиттер Б-Э. Этот переход является диодным и ток через него может протекать только по направлению проводимости диодного перехода. Цепь коллектор-эмиттер К-Э является управляемой цепью. С помощью тока через переход Б-Э можно управлять током через переход К-Э.

Принцип работы транзистора поясняется с помощью рис. 16.

Переход база-эмиттер (эмиттерный переход) за счет источника Еб смещен в прямом направлении, а переход коллектор-база (коллекторный переход) за счет источника Ек смещен в обратном направлении. Переход база-эмиттер - это диод, включенный в прямом направлении. Переход коллектор-база - это диод, включенный в обратном направлении. Благодаря смещению перехода база-эмиттер в прямом направлении электроны из эмиттера n-типа переходят в базу p-типа и движутся по направлению к обедненному слою на переходе база-коллектор. Эти электроны, являющиеся неосновными носителями в области базы, достигнув обедненного слоя, затягиваются полем объемного заряда коллекторного перехода и стремятся к минусу источника Ек, создавая тем самым в транзисторе коллекторный ток.

Лишь малая часть электронов в базе p-типа в процессе движения в сторону коллектора рекомбинирует с дырками. Дело в том, что база делается слабо легированной, т.е. с низкой концентрацией дырок, и очень тонкой. Когда электрон рекомбинирует в базе, происходит кратковременное нарушение равновесия, т.к. база приобретает отрицательный заряд. Равновесие восстанавливается с приходом дырки из базового источника Еб. Этот источник является поставщиком дырок для компенсации рекомбинирующих в базе зарядов, и эти дырки образуют базовый ток транзистора. Благодаря базовому току в базе не происходит накопления отрицательного заряда и переход база-эмиттер поддерживается смещенным в прямом направлении, а это, в свою очередь, обеспечивает протекание коллекторного тока.

Если коллекторную цепь разорвать, то все электроны циркулировали бы в цепи база-эмиттер. При наличии коллекторной цепи большая часть электронов устремляется в коллектор.

Таким образом, транзистор является прибором, который управляется током. Уменьшение потока электронов через коллекторный переход по сравнению с их потоком через переход эмиттер-база характеризуется коэффициентом передачи тока эмиттера =Iк/Iэ. Обычно =0,9…0.995. Отношение тока коллектора к току базы называется коэффициентом усиления тока базы в рассматриваемой схеме включения транзистора (она называется схемой с общим эмиттером). Этот коэффициент обозначают h21Э. Он равен h21Э=Iк/Iб>>1. Обычно h21Э =10…300.

Физически в работе транзистора принимают участие заряды двух типов (электроны и дырки), поэтому он называется биполярным.

При рассмотрении смещенного в прямом направлении перехода база-эмиттер мы учитывали только электроны, пересекающие этот переход. Такой подход оправдан тем, что область эмиттера n-типа специально легируется очень сильно, чтобы обеспечить большое количество свободных электронов. В тоже время область базы легируется очень слабо, что дает настолько мало дырок, что ими можно пренебречь при рассмотрении тока через переход база-эмиттер.

Таким образом, транзистор является усилительным прибором. В зависимости от схемы включения он может обеспечивать усиление по току, напряжению или по мощности. Возможно одновременное усиление и по току, и по напряжению, и по мощности.

Обозначения транзисторов типа p-n-p и n-p-n на электрических схемах показаны на рис. 17, 18.

2. Основные параметры транзистора

1. Коэффициент усиления по току.

Обычно используется коэффициент усиления h21Э в схеме с общим эмиттером:

h21Э=Iк/Iб>>1,

где Iб - ток базы; Iк - ток коллектора.

Транзистор является как бы узлом, как показано на рис. 19, поэтому

Iэ=Iб+Iк.

токи коллектора и эмиттера связаны соотношением:

Iк/Iэ=<1.

Найдем связь и h21Э.

=Iк/(Iб+Iк)=1/(Iб/Iк+1)=1/(1/h21Э+1)=h21Э/(1+h21Э)

-это очень близко к 1. Аналогично находим:

h21Э=Iк/Iб=/(1-).

Иногда для получения большого коэффициента усиления используется схема составного транзистора, которая получается, если два транзистора соединить по схеме:

Коэффициент усиления составного транзистора:

Iк1= 1Iб1;

Iк2=2Iб2;

Iб2=Iэ1=(1+1)Iб1;

Iк=Iк1+Iк2.

Из этих уравнений:

Iк=[1+(1+1)2]Iб112Iб1.

Коэффициент усиления транзистора h21э зависит от частоты, на которой работает транзистор, и от тока коллектора. С увеличением частоты h21Э падает. Это связано с проявлением его инерционных свойств в основном из-за наличия емкости коллекторного перехода. Для большинства транзисторов указывается граничная частота, при которой коэффициент усиления равен единице. Зависимость h21Э от тока коллектора представлена на рис. 20.

Любое включение, отличное от нормального, называется инверсным. Инверсия - изменение знака. Инверсное включение транзистора показано на рис. 21. При этом h21Э сильно падает и прибор перестает быть усилителем, хотя и остается управляемым.

2. Напряжение коллектор-эмиттер максимальное Uкэ max.

Указывается при отключенной (оборванной) базе или при конечном значении сопротивления Rбэ, которое включается как показано на рис. 22. Uкэ при оборванной базе меньше, чем Uкэ при наличии Rбэ. Величина Rбэ обычно указывается в справочнике. В настоящее время выпускаются транзисторы на напряжение до1500 В.

3. Ток коллектора максимальный Iк max; ток коллектора импульсный за определенное время Iки>Iк max.

4. Частотные свойства транзистора.

Различают: низкочастотные, среднечастотные, высокочастотные и сверхвысокочастотные (СВЧ) - Таблица 1. Есть также импульсные или переключательные транзисторы.

Обозначения транзисторов:

КТ ХХХ А, Б..., где ХХХ - цифры; буквы А,Б…характеризуют особенности электрических параметров. Например, КТ 908- импульсный, КТ 315 - очень распространен. ГТ ХХХ - германиевый транзистор. Чем больше значения цифр, тем выше частотные свойства и мощность транзистора. Изменение свойств транзисторов в зависимости от значений цифр иллюстрируется с помощью таблицы 1. В настоящее время существует большое количество транзисторов с четырьмя цифрами в обозначении.

3. Схемы включения транзисторов

В зависимости от того, какой из трех выводов является общим для входной и выходной цепи, различают три основные схемы включения транзисторов: схема с общим эмиттером, схема с общим коллектором, схема с общей базой.

Схема с общим эмиттером

Схема с общим эмиттером используется наиболее часто. Схема представлена на рис. 23. Взаимосвязь токов и напряжений в транзисторе устанавливают входные и выходные характеристики. Входные и выходные характеристики представлены соответственно на рис. 24, 25. Входная характеристика повторяет уже знакомую нам вольт-амперную характеристику диода.

При изображении выходной характеристики необходимо помнить, что коллекторный переход работает в режиме диода, включенного в обратном направлении.

Поэтому выходная характеристика - это обратная ветвь вольт-амперной характеристики диода, перенесенная в первый квадрант.

Выходных характеристик целое семейство, т.к. они изображаются для разных значений токов базы. При Iб=0 через транзистор протекает тепловой ток Iк0 обратно смещенного коллекторного перехода.

Коэффициент усиления входного тока базы схемы с общим эмиттером h21Э=Iк/Iб. Схема обеспечивает также усиление по напряжению и по мощности. Cхема применяется как усилительная и как ключевая.

Ключевой режим работы транзистора

Схема с общим эмиттером с ключевым режимом работы транзистора применяется для промежуточного усиления, как схема сигнализации, как схема питания электромагнитного реле.

Такая схема является основой интегральных логических элементов.

Свойства транзистора как усилителя тока описываются уравнением: Iк=h21ЭIб, где h21Э>10. Из этого уравнения видно, что регулируя сравнительно небольшой ток базы, можно управлять значительным током нагрузки, расположенной в коллекторе транзистора.

Максимальный ток коллектора, который можно получить в схеме с коллекторной нагрузкой, равен:

Iк max?Uпит/Rк .

Максимальному току коллектора соответствует максимальный ток базы Iб max.

Дальнейшее увеличение тока базы не приведет к увеличению тока коллектора, т.к. транзистор полностью открыт, падение напряжения на нем близко к нулю и он не определяет ток коллектора.

Принято говорить, что он находится в состоянии насыщения. Это состояние характеризуется коэффициентом насыщения.

Коэффициент насыщения характеризует превышение реального базового тока над требуемым. Он равен отношению Iб/Iб max. Его величина всегда больше единицы.

Чем сильнее будет насыщен транзистор, тем меньше будет напряжение коллектор-эмиттер и тем меньше будут тепловые потери в транзисторе.

Однако чрезмерное насыщение чревато большой неприятностью - в таком состоянии база транзистора накапливает большое количество неосновных носителей, которые задерживают выключение транзистора, когда прекращается ток базы.

При выключении транзистора в цепь базы подается отрицательное напряжение, в результате чего ток базы меняет свое направление и становится равным Iб выкл.

Пока происходит рассасывание неосновных носителей в базе, токи коллектора и базы не меняют своего значения, а транзистор находится в открытом состоянии.

Это время называется временем рассасывания tрас. После окончания процесса рассасывания происходит спад отрицательного тока базы и спад протекавшего через транзистор тока коллектора - время спада tсп.

Время выключения транзистора tвыкл равно:

tвыкл= tрас+ tсп.

Минимальное время выключения получается, если в базу транзистора до момента выключения подавался ток пограничного режима насыщения Iб?Iб max.

Для объяснения ключевого режима работы используют выходные характеристики, которые представлены на рис. 26. А и В возможные рабочие точки. В точке А транзистор выключен (или ключ разомкнут), в точке В транзистор включен (ключ замкнут). Чтобы получить точку В, необходимо обеспечить соответствующий ток базы.

В точке А:

Uкэ=Uп-RкIко; Iк=Iко.

В точке В:

Uкэ0,1В; Iк=(Uп-Uкэ)/Rк.

В расчетах обычно пренебрегают величинами Iко0, Uбэ0,6В и Uкэ0,1В. Диаграмма работы транзистора в ключевом режиме представлена на рис. 27. Обычно в открытом состоянии транзистора ток Iк задан. Требуемый ток базы Iб=Iк/h21Э обеспечивается базовой цепью

Iб =(Uб-Uбэ)/Rб.

Uбэ0,6В, тогда

Rб=(Uб-0,6)/Iб;

Iк=(Uп-Uкэ)/Rк; Uкэ0,1В.

Т. к. h21Э может меняться от значений Iк, от температуры, от времени, то ток базы Iб приходится задавать с запасом. При расчете Iб исходят из величины h21Эmin/(1,5...2). Число 1,5... 2 это коэффициент насыщения.

Работу транзистора в точках А и В принято характеризовать следующими терминами:

точка А - состояние отсечки (отсечен ток коллектора);

точка В - состояние насыщения (транзистор открыт полностью).

Переход из состояния в состояние происходит скачком.

Усилительный режим работы транзистора

Рассмотрим мощность, выделяемую на транзисторе в двух возможных режимах: ключевом и усилительном. График мощности Pк представлен на рис. 26. Нагрузочная прямая определяет возможные рабочие точки транзистора. В ключевом режиме мощность, выделяемая на транзисторе, соответствует точке А или В, т.е. всегда меньше максимальной возможной мощности. В усилительном режиме, когда возможно существование любых рабочих точек на нагрузочной прямой, мощность Pк может принимать и максимальное значение.

В усилительном режиме в общем случае входной сигнал может быть знакопеременным, например, синусоидальным. Переход база-эмиттер является диодным p-n переходом. Чтобы входная цепь транзистора могла работать с сигналом переменного тока, необходимо переход база-эмиттер сместить в прямом направлении, т.е. задать в базовой цепи рабочую точку по постоянному току. Относительно этого постоянного тока можно подавать в базовую цепь сигнал переменного тока, который будет усиливаться. Схема включения транзистора с общим эмиттером и диаграммы его работы в режиме усиления гармонического сигнала представлены соответственно на рис. 29 и 30, где Iсм - постоянный ток смещения базы. Постоянный ток смещения базы будет определять постоянную составляющую тока коллектора в соответствии с соотношением Iк=Iбh21Э. В усилительном режиме возможные рабочие точки находятся на нагрузочной прямой между точками А и В на рис. 31. Ток смещения должен выводить рабочую точку коллектора транзистора по постоянному току на середину отрезка А В, чтобы напряжение на коллекторе могло изменяться от этой середины как в сторону источника питания, так и в сторону общей точки.

Способы задания рабочей точки по постоянному току в усилительном режиме

Для задания рабочей точки по постоянному току необходимо в базу транзистора подать ток смещения. При этом необходимо обеспечить стабильность рабочей точки коллектора транзистора по постоянному току, т.е. исключить ее смещение при изменении параметров базовой цепи, при изменении температуры и с течением времени.

Обычно рабочая точка по постоянному току соответствует максимальной мощности Pк (т.е. максимальному нагреву транзистора).

1 ВАРИАНТ.

Схема представлена на рис. 32.

Iсм=(Uпит-Uбэ)/Rсм.

Схема отличается простотой, но имеет существенный недостаток: рабочая точка по постоянному току не стабильна. При изменении Rсм, например, из-за температуры, Iсм изменяется. Рабочая точка на коллекторе Iк=Iсмh21Э также может изменяться из-за изменения коэффициента усиления транзистора h21Э.

2 ВАРИАНТ (рис.33).

Ток смещения можно определить по соотношению

Iсм=Uпит/2Rсм.

Эта схема обладает гораздо большей стабильностью. При изменении по какой-либо причине тока смещения базы будет меняться рабочая точка коллектора. Через цепь обратной связи с коллектора на базу будет соответствующее воздействие на базовую цепь, уменьшающее эти изменения.

3 ВАРИАНТ (рис. 34).

Здесь потенциал базы
UбUбэ.
Обычно принимают, что ток Iдел через делитель напряжения из резисторов Rсм1 и Rсм2 от источника питания на порядок больше тока Iсм, т.е. задаются
Iдел=(Uпит-Uбэ)/Rсм1 10Iсм.
При этом потенциал базы Uб0,6В и может быть точно определен по входной характеристике транзистора исходя из требуемого тока смещения. Эта схема является достаточно стабильной. Т.к. в схеме задаётся потенциал базы (относительно общей точки), то при изменении сопротивлений Rсм1, Rсм2 они изменяются оба одновременно, их отношение меняется мало, поэтому мало изменяется потенциал базы, т.е. ток смещения.
4 ВАРИАНТ (рис. 35).
Это схема задания рабочей точки обладает очень высокой стабильностью. Увеличение неуправляемых тепловых токов через транзистор приводит к увеличению падения на резисторе Rэ. Это падение призакрывает транзистор, т.е. уменьшает этот ток. Аналогично схема реагирует на изменение коэффициента усиления h21Э. Обычно сопротивление резистора Rэ выбирают из условия, чтобы падение напряжения на нем от постоянного тока эмиттера не превышало 10% от напряжения питания Uпит. Чтобы сигнал переменного тока не создавал на Rэ падения и не уменьшал сигнал на нагрузке Rк, резистор Rэ шунтируют конденсатором Сэ (рис. 36). Должно выполняться соотношение:
Xс=1/maxCэ0,
где max=2fmax - максимальная частота усиливаемого сигнала.
Из этого выражения определяется емкость конденсатора Cэ.
Схема смещения по постоянному току может оказывать влияние на источник входного переменного сигнала.
С другой стороны источник входного сигнала может шунтировать схему смещения, если он низкоомный. Для исключения этого источник входного сигнала и цепь смещения отделяют разделительным конденсатором Ср1. Схема представлена на рис. 37.
Для отделения постоянной составляющей в выходной цепи от полезной переменной составляющей, которая усилилась, так же применяется разделительный конденсатор Ср2. Графики напряжений представлены на рис. 38.
Схема включения транзистора с общим коллектором
Схема показана на рис.39. Схему с общим коллектором называют также эмиттерный повторитель (напряжение на эмиттере Uэ повторяет напряжение Uб). Действительно,
Uэ=Uб-Uбэ, Uбэ=0,60, поэтому UэUб.
Соотношения для токов:
Iэ=Uэ/Rэ; Iк=Iбh21Э; Iэ=Iб+Iк=Iб(1+h21Э).
Таким образом, у схемы имеется усиление по току в (1+h21Э) раз.
Ток базы для обеспечения требуемого тока эмиттера может быть найден из последнего уравнения
Iб=Iэ/(1+h21Э),
Т.е. для получения заданного Iэ требуется в (1+h21Э) раз меньший ток базы Iб. Схема применяется как усилитель тока при работе на низкоомную нагрузку. У нее отсутствует усиление по напряжению (это повторитель напряжения), но существует усиление по току и мощности.
Схема с общей базой
Схема показана на рис. 40. Соотношения для токов:
Iк=Iэ.
Т.к. близко 1, то Iк Iэ. Из последнего равенства следует, что это повторитель тока. Схема обладает усилением по напряжению и по мощности. Схема применяется сравнительно редко. Одно из применений: как источник пилообразного напряжения - рис. 41. Ток эмиттера:

Iэ=Uэ/Rэ.

Величины Uэ и Rэ заданы и постоянны, поэтому Iэ=Iк=const. Т.о. конденсатор заряжается постоянным током. Напряжение на конденсаторе

Uc=(1/С) ic dt.

Т.к. ic=Iк=const, то Uc=Iкt/С - это прямая линия. Для периодического сброса напряжения на конденсаторе до нуля применяется дополнительный транзисторный ключ, включаемый параллельно конденсатору.


Подобные документы

  • Транзисторы– полупроводниковый прибор, пригодный для усиления мощности. Принцип действия n–p–n транзистора в режиме без нагрузки. Усиление каскада с помощью транзистора. Схемы включения транзисторов и работы с общим эмиттером и с общим коллектором.

    реферат [63,2 K], добавлен 05.02.2009

  • Биполярные транзисторы, режимы работы, схемы включения. Инверсный активный режим, режим отсечки. Расчет h-параметров биполярного транзистора. Расчет стоко-затворных характеристик полевого транзистора. Определение параметров электронно-лучевой трубки.

    курсовая работа [274,4 K], добавлен 17.03.2015

  • Рассмотрение правил включения транзистора по разным вариантам схем - с общим эмиттером, общей базой, общим коллектором. Описание особенностей работы усилительных каскадов в области высоких и низких частот. Представление схемы дифференциального каскада.

    реферат [138,3 K], добавлен 17.03.2011

  • Термоэлектроника как основа работы полупроводниковых приборов. Принцип работы биполярного транзистора: схема с общей базой и общим эмиттером. Способ исследования потока тепла. Опыт с биполярным транзистором, показывающий положительную обратную связь.

    контрольная работа [418,7 K], добавлен 10.05.2015

  • Устройство, эквивалентная схема биполярного транзистора. Назначение эмиттера и коллектора. Основные параметры, принцип действия и схемы включения n–p–n транзистора. Режимы его работы в зависимости от напряжения на переходах. Смещение эмиттерного перехода.

    реферат [266,3 K], добавлен 18.01.2017

  • Устройство, принцип действия и режимы работы биполярного транзистора; классификация, схемы включения, вольт-амперные характеристики. Расчет электрических цепей с полупроводниковыми приборами. Определение рабочей точки, технология изготовления, применение.

    презентация [662,5 K], добавлен 14.11.2014

  • Устройство плоскостного биполярного транзистора. Концентрация основных носителей заряда. Схемы включения биполярных транзисторов. Статические характеристики биполярных транзисторов. Простейший усилительный каскад. Режимы работы и область применения.

    лекция [529,8 K], добавлен 19.11.2008

  • Практические навыки схемного введения биполярного транзистора в заданный режим покоя. Определение основных свойств транзистора в усилительном и ключевых режимах. Овладение методикой работы в учебной лаборатории в программно-аппаратной среде NI ELVIS.

    лабораторная работа [1,3 M], добавлен 04.03.2015

  • Рассмотрение в программах Protel и PSpice AD работы основных элементов устройства усилителя: мультиплексора, компаратора, счетчика адресов, статических регистров. Разработка структурной и принципиальной схемы усилителя с общим эмиттером и коллектором.

    дипломная работа [858,9 K], добавлен 11.01.2015

  • Исследование полупроводниковых диодов. Изучение статических характеристик и параметров биполярного плоскостного транзистора в схеме с общим эмиттером. Принцип действия полевого транзистора. Электронно-лучевая трубка и проверка с ее помощью радиодеталей.

    методичка [178,3 K], добавлен 11.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.