Коммутация в полупроводниковых преобразователях
Техника полупроводниковых приборов как самостоятельная область электроники. Выпрямительные диоды малой, средней и большой мощности. Импульсные диоды и полупроводниковые стабилитроны. Полупроводниковый преобразователь тепловой энергии окружающей среды.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 09.04.2009 |
Размер файла | 83,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Федеральное агентство железнодорожного транспорта РФ
Государственное образовательное учреждение высшего профессионального образования
Омский государственный университет путей сообщения (ОмГУПС)
Кафедра: “Подвижной состав электрических железных дорог”
Реферат на тему: «Коммутация в полупроводниковых преобразователях»
Выполнил: студент гр. 44 Е
___________ И.В. Павлов
Проверил: преподаватель
___________ И.Г. Шахов
Омск 2006
Полупроводниковые приборы
Техника полупроводниковых приборов стала самостоятельной областью электроники. Замена электронных ламп полупроводниковыми приборами успешно осуществлена во многих радиотехнических устройствах. На всем протяжении развития радиотехники широко применялись кристаллические детекторы, представляющие собой полупроводниковые выпрямители для токов высокой частоты. Для выпрямления постоянного тока электрической сети используют купроксные и селеновые полупроводниковые выпрямители. Однако они непригодны для высоких частот. Ещё в 1922 г. сотрудник Нижегородской радио лаборатории О.В. Лосев получил генерирование электрических колебаний с помощью кристаллического детектора и сконструировал приёмник “Кристадин”, в котором за счет генерации собственных колебаний получалось усиление принимаемых сигналов. Он имел значительно большую чувствительность, нежели обычные приемники с кристаллическими детекторами. Открытие Лосева, к сожалению, не получило должного развития в последующие годы. Полупроводниковые триоды, получившие названия транзисторов, предложили в 1948 г. американские ученые Бардин, Браттейн и Шокли.
По сравнению с электронными лампами у полупроводниковых приборов имеются существенные достоинства:
1. Малый вес и малые размеры.
2. Отсутствие затраты энергии на накал.
3. Большой срок службы (до десятков тысяч часов).
4. Большая механическая прочность (стойкость к тряске, ударам и другим видам механических перегрузок).
5. Различные устройства (выпрямители, усилители, генераторы) с полупроводниковыми приборами имеют высокий КПД, так как потери энергии в самих приборах незначительны.
6. Маломощные устройства с транзисторами могут работать при очень низких питающих напряжениях.
Вместе с тем полупроводниковые приборы в настоящее время обладают следующими недостатками:
1. Параметры и характеристики отдельных экземпляров приборов данного типа имеют значительный разброс.
2. Свойства приборов сильно зависят от температуры.
3. Работа полупроводниковых приборов резко ухудшается под действием радиоактивного излучения и т.д.
Транзисторы могут работать почти во всех устройствах, в которых применяются вакуумные лампы. В настоящее время транзисторы успешно применяются в усилителях, приёмниках, передатчиках, генераторах, иизмерительных приборах, импульсных схемах и во многих других устройствах.
Типы диодов
По назначению полупроводниковые диоды подразделяются на выпрямительные диоды малой, средней и большой мощности, импульсные диоды и полупроводниковые стабилитроны. Выпрямительные диоды малой мощности. К ним относятся диоды, поставляемые промышленностью на прямой ток до 300мА. Справочным параметром выпрямительных диодов малой мощности является допустимый выпрямительный ток (допустимой среднее значение прямого тока), который определяет в заданном диапазоне температур допустимое среднее за период значение длительно протекающих через диод импульсов прямого тока синусоидальной формы при паузах в 180 (полупериод) и частоте 50 Гц. Максимальное обратное напряжения этих диодов лежит в диапазоне от десятков до 1200В.
Выпрямительные диоды средней мощности. К этому типу относятся диоды, допустимое среднее значение прямого тока, которых лежит в пределах 300мА-10мА. Большой прямой ток этих по сравнению с маломощными диодами достигается увеличением размеров кристалла, в частности рабочей площади p-n перехода. Диоды средней мощности выпускаются преимущественно кремниевыми. В связи с этим обратный ток этих диодов при сравнительно большой плоскости p-n перехода достаточно мал (несколько десятков микроампер). Теплота, выделяемая в кристалле от протекания прямого и обратного токов в диодах средней мощности, уже не может быть рассеяна корпусом прибора.
Мощные (силовые) диоды. К данному типу относятся диоды на токи от 10А и выше. Промышленность выпускает силовые диоды на токи 10,16,25,40 и т.д. и обратные напряжения до3500 В. Силовые диоды имеют градацию по частоте охватывающие частотный диапазон до десятков кГц. Мощные диоды изготовляют преимущественно из кремния. Кремниевая пластинка с p-n переходом, создаваемым диффузным методом, для таких диодов представляет собой диск диаметром 10-100мм и толщиной 0,3-0,6 мм.
Полупроводниковый диод
Электронно-дырочный переход представляет собой полупроводниковый диод. Нелинейные свойства диода видны при рассмотрении его вольтамперной характеристики. Она показывает, что прямой ток в десятки миллиампер получается при прямом напряжении порядка десятых долей вольта. Поэтому прямое сопротивление имеет величину не выше десятков Ом. Для более мощных диодов прямой ток составляет сотни миллиампер и больше при таком же малом напряжении, а R соответственно снижается до единиц Ом и меньше. Участок характеристики для обратного тока, малого по сравнению с прямым током, обычно показывают в другом масштабе. Обратный ток при обратном напряжении до сотен вольт у диодов небольшой мощности составляет лишь единицы или десятки микроампер. Это соответствует обратному сопротивлению до сотен кОм и больше. Полупроводниковые диоды подразделяются по многим признакам. Прежде всего, следует различать точечные, плоскостные и поликристаллические диоды. У точечных диодов линейные размеры, определяющие площадь p-n перехода, такого же порядка как толщина перехода, или меньше ее. У плоскостных диодов эти размеры значительно больше толщины перехода. Точечные диоды имеют малую емкость p-n перехода и поэтому применяются на любых частотах вплоть до СВЧ. Но они могут пропускать токи не более единиц или нескольких десятков миллиампер. Плоскостные диоды в зависимости от площади перехода обладают емкостью в десятки пикофарад и более. Поэтому их применяют на частотах не более десятков килогерц. Допустимый ток в плоскостных диодах бывает от десятков миллиампер до сотен ампер и больше. Основой точечных и плоскостных диодов являются пластинки полупроводника, вырезанные из монокристалла, имеющего во всем своем объеме правильное кристаллическое строение. В качестве полупроводниковых веществ для точечных и плоскостных диодов применяют чаще всего германий и кремний, а в последнее время также и арсенид галлия, и карбид кремния. Поликристаллические диоды имеют p-n переход, образованный полупроводниковыми слоями, состоящими из большого количества кристаллов малого размера, различно ориентированных друг относительно друга и поэтому не представляющих собой единого монокристалла. Эти диоды бывают селеновыми, медно-закисные (купроксные) и титановые. В нем тонкая заостренная проволочка(игла) с нанесенной на нее примесью приваривается при помощи импульса тока к пластинке полупроводника с определенным типом электропроводности. При этом из иглы в основной полупроводник диффундируют примеси которые создают в нем область с другим типом проводимости. Это процесс наз. формовкой диода. Таким образом, около иглы получается мини p-n переход полусферической формы. Следовательно, принципиальной разницы между точечными и плоскостными диодами нет. В последнее время появились еще так называемые микро плоскостные или микросплавные диоды, которые имеют несколько больший по плоскости p-n переход, чем точечные диоды.
Плоскостные диоды изготавливаются, главным образом, методами сплавления диффузии. В пластинку германия n-типа вплавляют при температуре около 500 градусов каплю индия, которая, сплавляясь с германием, образует слой германия p-типа. Область с электропроводностью p-типа имеет более высокую концентрацию примеси, нежели основная пластинка сравнительно высокоомного германия, и поэтому является эмиттером. К основной пластинке германия и к индию припаиваются выводные проволочки, обычно из никеля. Если за исходный материал взят высокоомный германий p-типа, то в него вплавляют сурьму и тогда получается эмитерная область n-типа. Следует отметить, что сплавным методом получают так называемые резкие или ступенчатые p-n переходы, в которых толщина области изменения концентрации примесей значительно меньше толщины области объёмных зарядов, существующих в переходе.
Транзистор
Транзистор, или полупроводниковый триод, являясь управляемым элементом, нашел широкое применение в схемах усиления, а также в импульсных схемах. Отсутствие накала, малые габариты и стоимость, высокая надежность- таковы преимущества, благодаря которым транзистор вытеснил из большинства областей техники электронный лампы. Биполярный транзистор представляет собой трехслойную полупроводниковую структуру, с чередующимися типом электропроводности и содержит два p-n перехода. В зависимости от чередования слоев существуют транзисторы типов p-n-p и n-p-n. В качестве исходного материала для получения трехслойной структуры используют германий и кремний. Трехслойная транзисторная структура создается по сплавной или диффузионной технологии, по которой выполняется и двухслойная структура проводниковых диодов. Трехслойная транзисторная структура типа p-n-p, выполненная по сплавной технологии Пластина полупроводника n-типа является основанием, базой конструкции. Два наружных p-слоя создаются в результате диффузии в них акцепторной примеси при сплавлении с соответствующим материалом. Один из слоев называется эмитерным, а другой - коллекторным. Так же называются и p-n-переходы создаваемые этими слоями со слоем базы, а также внешние выводы от этих слоев.
Функция эмиттерного перехода - инжектирование (эмитирование) носителей заряда в базу, функция коллекторного перехода - сбор носителей заряда, прошедших через базовый слой. Чтобы носители заряда, инжектируемые эмиттером и проходящий через базу, полнее собирались коллектором, площадь коллекторного перехода. В транзисторах типа n-p-n функции всех трех слоев и их названия аналогичны, изменяется лишь тип носителей заряда, проходящий через базу: в приборах типа p-n-p - это дырки, в приборах типа n-p-n -это электроны Полупроводниковая структура транзистора типов p-n-p и n-p-n. Существуют три способа включения транзистора: с общей базой (ОБ), с общим эмиттером (ОЭ), и общим коллектором (ОК). Различие в способах включения зависит от того, какой из выводов транзистора является общим для входной и выходной цепей. В схеме ОБ общей точкой входной и выходной цепей является база, в схеме ОЭ - эмиттер, в схеме ОК - коллектор. В силу того, что статические характеристики транзистора в схемах ОЭ или ОК примерно одинаковы, рассматриваются характеристики только для двух способов включения: ОБ или ОЭ. Представление транзистора схемой замещения (эквивалентной схемой) необходимо для проведения расчетов цепей с транзисторами. Особый интерес представляет схема замещения в физических параметрах, в которых все ее элементы связаны с внутренними (физическими) параметрами транзистора. Использование такой схемы замещения создает удобство и наглядность при анализе влияния параметров прибора на показатели схем с транзисторами. Ниже рассматриваются схемы замещения транзисторов ОБ и ОЭ для переменных составляющих токов и напряжений применительно к расчету схем с транзисторами, работающими в усилительном режиме, в частности усилительных каскадов. Такие схемы замещения справедливы для линейных участков входных и выходных характеристик транзистора, при которых параметры транзистора можно считать неизменными. В этом случае используют так называемые дифференциальные параметры транзистора, относящиеся к небольшим приращениям напряжения и тока. По аналогии со структурой транзистора она представляет собой сочетание двух контуров: левого, относящегося к входной цепи (эмиттер-база), и правого, относящегося к выходной цепи (коллектор - база). Общим для обоих контуров является цепью базы с сопротивлением r.
Полупроводниковый преобразователь тепловой энергии окружающей среды
Проблема современной энергетики состоит в том, что производство электроэнергии - источник материальных благ человека находится в губительном противостоянии с его средой обитания - природой и как результат этого - неизбежность экологической катастрофы.
Поиск и открытие альтернативных экологически чистых способов получения электроэнергии - актуальнейшая задача человечества. Одним из источников энергии, является природная окружающая среда: воздух атмосферы, воды морей и океанов, которые содержат огромное количество тепловой энергии, получаемой от Солнца.
Рассмотрим для примера изолированный кристалл собственного полупроводника, который легирован (см. рис.1) донорной примесью вдоль оси X по экспоненциальному закону
Nд(x) = f (ekx).
Рисунок 1 - Кристалл полупроводника легированый донорной примесью.
Левая часть кристалла (X0) легируется до такой концентрации Nдмакс, чтобы уровень Ферми находился у дна зоны проводимости полупроводника, а правая часть кристалла (Xк) легируется до минимально возможной концентрации Nдмин, чтобы уровень Ферми находился посредине запрещенной зоны полупроводника, при заданной температуре. Основными носителями заряда, в данном случае, являются электроны (n).Для простоты рассуждений, неосновными носителями - дырками (р) пренебрегаем из-за малой их концентрации.В некоторый условный начальный момент, когда закон распределения концентрации электронов совпадает с законом распределения донорной примеси (n=Nд), кристалл в целом является электрически нейтральным и в каждом его элементарном объеме выполняется условие np=ni2, а вдоль оси X существует положительный градиент концентрации (см. рис.2) основных носителей - электронов dn/dx>0.
Рисунок 2 - Закон распределения концентрации основных носителей в кристалле.
Под действием сил теплового движения и в результате наличия градиента концентрации, электроны начинают диффундировать в кристалле вдоль оси X из области высокой их концентрации (X0) в область низкой концентрации (Xк), в результате - электронейтральность кристалла нарушается. Электроны, движущиеся слева направо, оставляют после себя положительно заряженные ионы донорной примеси Nд+.Эти ионы, жестко связанные с кристаллической решеткой полупроводника, образуют в левой части кристалла неподвижный положительный объемный заряд, а электроны, перешедшие в правую часть кристалла, образуют отрицательный объемный заряд равной величины, в результате чего в объеме кристалла полупроводника вдоль оси X образуется постоянное по величине электрическое поле Eх (см. рис.3).
Рисунок 3 - Распределение объемных зарядов в кристалле
Силы электрического поля будут стремиться возвращать электроны в ту область кристалла, откуда они диффундировали. Те электроны, энергия которых недостаточна для преодоления сил электрического поля, будут возвращаться - дрейфовать в электрическом поле в направлении, противоположном процессу диффузии.
Таким образом, в кристалле полупроводника вдоль оси X текут два встречно направленных тока: Jдиф. - ток диффузии, Jдр. - ток дрейфа.В процессе образования электрического поля в кристалле в сторону увеличения его напряженности, диффузионный ток уменьшается вследствие снижения градиента концентрации электронов, а дрейфовый ток увеличивается за счет увеличения количества электронов, возвращаемых растущим полем в обратную сторону, что в конечном итоге приводит к выравниванию этих токов Jдиф.=Jдр. и установлению в объеме кристалла электрического и термодинамического равновесия.
Плотность тока диффузии:
Jдиф. = -qnD(dn/dx).
Плотность тока дрейфа:
Jдр. = мnqnEx .
Суммарный ток в кристалле:
Jk = Jдр. + Jдиф. = мnqnEx - qnD(dn/dx) = 0.
Исходя из вышеизложенного, напряженность электрического поля в кристалле:
Ex = (kT / qn) K,
где: k - постоянная Больцмана, T - абсолютная температура кристалла, qn - заряд основных носителей, K - показатель экспоненты распределения примеси.
Таким образом, неоднородное распределение донорной примеси Nд вдоль оси X кристалла полупроводника по экспоненциальному закону приводит к образованию в объеме кристалла полупроводника постоянного по величине электрического поля. Величина напряженности, которого Ex не зависит от координаты X, а определяется только величиной абсолютной температуры T кристалла и показателем K экспоненты распределения донорной примеси. При этом один конец полупроводника (X0) окажется заряженным положительно по отношению к другому концу полупроводника (Xk).
В этом случае, при заданной температуре, диаграмма энергетических зон в полупроводнике вдоль оси X приобретает следующий вид (см. рис.4)
Рисунок 4 - Диаграмма энергетических зон
ДEс - высота потенциального барьера между концами полупроводникового кристалла, цk - разность потенциалов между концами полупроводникового кристалла, б - угол наклона энергетических зон.
tgб = qnEx .
Это означает, что между противоположными концами полупроводникового кристалла существует разность потенциалов, цk а значит, развивается ЭДС (холостого хода).ЭДС, выраженная в Вольтах будет по величине численно равна половине ширины запрещенной зоны полупроводника:
ЭДС = (Ec - Ev) / 2 [B].
Если замкнуть разноименные концы полупроводникового кристалла металлическим проводником с сопротивлением R, то в цепи потечет электрический ток JR, и как следствие в кристалле нарушится электрическое и термодинамическое равновесие. А именно: электроны уйдут с правого конца кристалла и перейдут в левый конец кристалла через проводник, чем будет увеличен градиент концентрации электронов, а значит ток диффузии Jдиф.. увеличится, а ток дрейфа Jдр. уменьшится, так как уменьшится напряженность электрического поля Eх.
Ток JR в проводнике будет составлять разницу между токами диффузии Jдиф. и дрейфа Jдр.:
JR = Jдиф. - Jдр..
При увеличении тока диффузии электроны будут отбирать тепловую энергию от кристаллической решетки полупроводника, вследствие преодоления ими потенциального барьера ДЕс, в результате чего кристалл будет охлаждаться. Для поддержания постоянного тока в цепи нагрузки необходимо непрерывно подводить к кристаллу теплоту Q от окружающей среды (воздух, вода и т.п. (см. рис.5).
Рисунок 5 - Электрическая схема полупроводникового преобразователя.
Реакторы коммутационные
Реакторы коммутационные для подключения к сети полупроводниковых выпрямительных устройств. Назначение: Коммутационный реактор -- устройство, обеспечивающее ограничение токов при коммутации модулей в полупроводниковых преобразователях электроприводов. Применяются в сочетании с защитными предохранителями.
Рисунок 6 - Схема подключения реактора
Список используемой литературы
1 И.П. Жеребцов “Основы электроники”.
2. Ю.С. Забродин “Промышленная электроника”.
3. И.М. Викулин “Физика полупроводниковых приборов”.
2 Материал сайт http://www.n-t.org/
Подобные документы
Электропреобразовательный полупроводниковый прибор с одним электрическим переходом и двумя выводами. Выпрямительные диоды. Полупроводниковый стабилитрон. Туннельные и обращенные диоды. Варикапы. Расчет электрических цепей с полупроводниковыми диодами.
лекция [570,9 K], добавлен 19.11.2008Полупроводниковые приборы. Выпрямительные свойства диодов. Динамический режим работы диодов. Принцип действия диода. Шотки, стабилитроны, стабисторы, варикапы. Туннельные диоды. Обращённый диод. Статическая характеристика и применение обращённого диода.
реферат [515,0 K], добавлен 14.11.2008Диод как электропреобразовательный полупроводниковый прибор с одним электрическим переходом и двумя выводами. Его вольт-амперная характеристика. Основные типы диодов: выпрямительные, высокочастотные, переключающие, стабилитроны, сарикапы и диоды Шотки.
реферат [1017,8 K], добавлен 22.02.2015Работа полупроводниковых электронных приборов и интегральных микросхем. Некоторые положения и определения электронной теории твердого тела. Кристаллическое строение полупроводников. Электронно-дырочный переход. Вольтамперная характеристика п-р перехода.
лекция [196,9 K], добавлен 15.03.2009Изучение конструкции и принципов работы опто-электрических полупроводниковых преобразователей энергии. Наблюдение специфического отличия статических характеристик приборов от просто полупроводниковых аналогов на примере оптоэлектронной пары (оптронов).
лабораторная работа [636,9 K], добавлен 24.06.2015Эксплуатация полупроводниковых преобразователей и устройств: недостатки полупроводниковых приборов, виды защит. Статические преобразователи электроэнергии: трансформаторы. Назначение, классификация, виды, конструкция. Работа трансформатора под нагрузкой.
лекция [190,2 K], добавлен 20.01.2010Технологический маршрут производства полупроводниковых компонентов. Изготовление полупроводниковых пластин. Установка кристаллов в кристаллодержатели. Сборка и герметизация полупроводниковых приборов. Проверка качества и электрических характеристик.
курсовая работа [3,0 M], добавлен 24.11.2013Назначение и классификация полупроводниковых приборов, особенности их применения в преобразователях энергии и передаче информации. Система обозначений диодов и тиристоров, их исследование на стенде. Способы охлаждения расчет нагрузочной способности.
дипломная работа [3,9 M], добавлен 28.09.2014Полупроводниковые материалы, изготовление полупроводниковых приборов. Переход электрона из валентной зоны в зону проводимости. Незаполненная электронная связь в кристаллической решетке полупроводника. Носители зарядов, внешнее электрическое поле.
лекция [297,5 K], добавлен 19.11.2008Физические элементы полупроводниковых приборов. Электрический переход. Резкий переход. Плоскостной переход. Диффузионный переход. Планарный переход. Явления в полупроводниковых приборах. Виды полупроводниковых приборов. Элементы конструкции.
реферат [17,9 K], добавлен 14.02.2003