Прогнозирование с помощью нечеткой логики

Неопределенности в задачах автоматического управления. Нечеткая логика, ее принципы. Области применения технологий управления. Степень принадлежности антецедента. Прогнозировании финансовых индикаторов. Проект нечеткой системы управления на fuzzy TECH.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 09.03.2009
Размер файла 869,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

21

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Севастопольский национальный технический университет

Кафедра технической кибернетики

РЕФЕРАТ

по научно-исследовательской работе

на тему «Прогнозирование с помощью нечеткой логики»

Выполнил: ст. гр. А-42д

Пилецкий А.А.

Проверил: Скороход Б.А.

Севастополь

2006

СОДЕРЖАНИЕ

ВВЕДЕНИЕ
1. Общие понятия нечетких множеств
1.1 Принципы нечеткой логики
1.2 Фаззификация (переход к нечеткости)
1.3 Лингвистические переменные
1.4 Функции принадлежности
1.5 Разработка нечетких правил
1.6 Дефаззификация (устранение нечеткости)
1.7 Метод центра максимума (СоМ)
1.8 Метод наибольшего значения ( МоМ )
1.9 Метод центроида ( СоА )
2. Описание прикладной задачи
2.1 Результаты решения прикладной задачи
ЗАКЛЮЧЕНИЕ
БИБЛИОГРАФИЯ
ПРИЛОЖЕНИЕ А
ВВЕДЕНИЕ
Для описания неопределенностей в задачах автоматического управления используются три метода:
вероятностный ( стохастический );
использование нечеткой логики (fuzzy logic );
хаотические системы.
Более подробно остановимся на втором пункте.
Впервые термин нечеткая логика (fuzzy logic) был введен американским профессором Лотфи Заде в 1965 году в работе “Нечеткие множества” в журнале “Информатика и управление”.
Основанием для создания новой теории послужил спор профессора со своим другом о том, чья из жен привлекательнее. К единому мнению они, естественно, так и не пришли. Это вынудило Заде сформировать концепцию, которая выражает нечеткие понятия типа “привлекательность” в числовой форме.
Очевидной областью внедрения алгоритмов нечеткой логики являются всевозможные экспертные системы, в том числе:
нелинейный контроль за процессами ( производство );
самообучающиеся системы ( или классификаторы ), исследование рисковых и критических ситуаций ;
распознавание образов;
финансовый анализ ( рынки ценных бумаг ) ;
исследование данных ( корпоративные хранилища );
совершенствование стратегий управления и координации действий, например сложное промышленное производство.
В Японии это направление переживает настоящий бум. Здесь функционирует специально созданная лаборатория Laboratory for International Fuzzy Engineering Research (LIFE). Программой этой организации является создание более близких человеку вычислительных устройств. LIFE объединяет 48 компаний, в числе которых находятся: Hitachi, Mitsubishi, NEC, Sharp, Sony, Honda, Mazda, Toyota. Из зарубежных ( не Японских ) участников LIFE можно выделить: IBM, Fuji Xerox, а также к деятельности LIFE проявляет интерес NASA.
Мощь и интуитивная простота нечеткой логики как методологии разрешения проблем гарантирует ее успешное использование во встроенных системах контроля и анализа информации. При этом происходит подключение человеческой интуиции и опыта оператора.
В отличие от традиционной математики, требующей на каждом шаге моделирования точных и однозначных формулировок закономерностей, нечеткая логика предлагает совершенно иной уровень мышления, благодаря которому творческий процесс моделирования происходит на наивысшем уровне абстракции, при котором постулируется лишь минимальный набор закономерностей.
Нечеткие числа, получаемые в результате “не вполне точных измерений”, во многом аналогичны распределениям теории вероятностей, но свободны от присущих последним недостатков: малое количество пригодных к анализу функций распределения, необходимость их принудительной нормализации, соблюдение требований аддитивности, трудность обоснования адекватности математической абстракции для описания поведения фактических величин. В пределе, при возрастании точности, нечеткая логика приходит к стандартной, Булевой. По сравнению с вероятностным методом, нечеткий метод позволяет резко сократить объем производимых вычислений, что, в свою очередь, приводит к увеличению быстродействия нечетких систем.
Недостатками нечетких систем являются:
отсутствие стандартной методики конструирования нечетких систем;
невозможность математического анализа нечетких систем существующими методами;
применение нечеткого подхода по сравнению с вероятностным не приводит к повышению точности вычислений.
1 Общие понятия нечетких множеств

1.1 Принципы нечеткой логики

Нечеткая логика основана на использовании таких оборотов естественного языка, как «далеко», «близко», «холодно», «горячо». Диапазон ее применения очень широк - от бытовых приборов до управления сложными промышленными процессами. Многие современные задачи управления просто не могут быть решены классическими методами из-за очень большой сложности математических моделей, их описывающих. Вместе с тем, чтобы использовать теорию нечеткости на цифровых компьютерах, необходимы математические преобразования, позволяющие перейти от лингвистических переменных к их числовым аналогам в ЭВМ.

На рисунке 1 показаны области наиболее эффективного применения современных технологий управления. Как видно, классические методы управления хорошо работают при полностью детерминированном объекте управления и детерминированной среде, а для систем с неполной информацией и высокой сложностью объекта управления оптимальными являются нечеткие методы управления. (В правом верхнем углу рисунка приведена еще одна современная технология управления - с применением искусственных нейронных сетей, но мы не станем столь глубоко вдаваться в достижения ученых.)

Вернемся к теории и кратко рассмотрим такие понятия, как «нечеткие правила», «нечеткий вывод» да и сам термин «нечеткое управление».

Классическая логика развивается с древнейших времен. Ее основоположником считается Аристотель. Логика известна нам как строгая и сугубо теоретическая наука, и большинство ученых продолжают придерживаться этого мнения. Вместе с тем классическая или булева логика имеет один существенный недостаток - с ее помощью невозможно описать ассоциативное мышление человека. Классическая логика оперирует только двумя понятиями: ИСТИНА и ЛОЖЬ, и исключая любые промежуточные значения. Аналогично этому булева логика не признает ничего кроме единиц и нулей. Все это хорошо для вычислительных машин, но попробуйте представить весь окружающий вас мир только в черном и белом цвете, вдобавок исключив из языка любые ответы на вопросы, кроме ДА и НЕТ. В такой ситуации вам можно только посочувствовать. Решить эту проблему и призвана нечеткая логика. С термином «лингвистическая переменная» можно связать любую физическую величину, для которой нужно иметь больше значений, чем только ДА и НЕТ. В этом случае вы определяете необходимое число термов и каждому из них ставите в соответствие некоторое значение описываемой физической величины. Для этого значения степень принадлежности физической величины к терму будет равна единице, а для всех остальных значений - в зависимости от выбранной функции принадлежности. Например, можно ввести переменную ВОЗРАСТ и определить для нее термы ЮНОШЕСКИЙ, СРЕДНИЙ и ПРЕКЛОННЫЙ. Обсудив с экспертами значения конкретного возраста для каждого терма, вы с полной уверенностью можете избавиться от жестких ограничений логики Аристотеля.

Получившие наибольшее развитие из всех разработок искусственного интеллекта, экспертные системы завоевали устойчивое признание в качестве систем поддержки принятия решений. Подобные системы способны аккумулировать знания, полученные человеком в различных областях деятельности. Посредством экспертных систем удается решить многие современные задачи, в том числе и задачи управления. Однако большинство систем все еще сильно зависит от классической логики.

Одним из основных методов представления знаний в экспертных системах являются продукционные правила, позволяющие приблизиться к стилю мышления человека. Любое правило продукций состоит из посылок и заключения. Возможно наличие нескольких посылок в правиле, в этом случае они объединяются посредством логических связок И, ИЛИ. Обычно продукционное правило записывается в виде: «ЕСЛИ (посылка) (связка) (посылка)… (посылка) ТО (заключение)».

Главным же недостатком продукционных систем остается то, что для их функционирования требуется наличие полной информации о системе.

Нечеткие системы тоже основаны на правилах продукционного типа, однако в качестве посылки и заключения в правиле используются лингвистические переменные, что позволяет избежать ограничений, присущих классическим продукционным правилам.

Целевая установка процесса управления связывается с выходной переменной нечеткой системы управления, но результат нечеткого логического вывода является нечетким, а физическое исполнительное устройство не способно воспринять такую команду. Необходимы специальные математические методы, позволяющие переходить от нечетких значений величин к вполне определенным. В целом весь процесс нечеткого управления можно разбить на несколько шагов: фаззификация, разработка нечетких правил и дефаззификация.

Рассмотрим подробнее эти шаги на примере поставляемой с пакетом fuzzy TECH модели контейнерного крана. Пусть Вам необходимо перегрузить контейнер с баржи на железнодорожную платформу. Вы управляете мощностью двигателя тележки крана, заставляя ее двигаться быстрее или медленнее. От скорости перемещения тележки, в свою очередь, зависит расстояние до цели и амплитуда колебания контейнера на тросе. Вследствие того, что стратегия управления краном сильно зависит от положения тележки, применение стандартных контроллеров для этой задачи весьма затруднительно. Вместе с тем математическая модель движения груза, состоящая из нескольких дифференциальных уравнений, может быть составлена довольно легко, но для ее решения при различных исходных данных потребуется довольно много времени. К тому же исполняемый код программы будет большим и не поворотливым. Нечеткая система справляется с такой задачей очень быстро - несмотря на то, что вместо сложных дифференциальных уравнений движения груза весь процесс движения описывается терминами естественного языка: «больше», «средне», «немного» и т. п. То есть так, будто вы даете указания своему товарищу, сидящему за рычагами управления.

1.2 Фаззификация (переход к нечеткости)

Точные значения входных переменных преобразуются в значения лингвистических переменных посредством применения некоторых положений теории нечетких множеств, а именно - при помощи определенных функций принадлежности.

Рассмотрим этот этап подробнее. Прежде всего, введем понятие «лингвистической переменной» и «функции принадлежности».

1.3 Лингвистические переменные

В нечеткой логике значения любой величины представляются не числами, а словами естественного языка и называются ТЕРМАМИ. Так, значением лингвистической переменной ДИСТАНЦИЯ являются термы ДАЛЕКО, БЛИЗКО и т. д.

Конечно, для реализации лингвистической переменной необходимо определить точные физические значения ее термов. Пусть, например, переменная ДИСТАНЦИЯ может принимать любое значение из диапазона от 0 до 60 метров. Как же нам поступить? Согласно положениям теории нечетких множеств, каждому значению расстояния из диапазона в 60 метров может быть поставлено в соответствие некоторое число, от нуля до единицы, которое определяет СТЕПЕНЬ ПРИНАДЛЕЖНОСТИ данного физического значения расстояния (допустим, 10 метров) к тому или иному терму лингвистической переменной ДИСТАНЦИЯ. В нашем случае расстоянию в 50 метров можно задать степень принадлежности к терму ДАЛЕКО, равную 0,85, а к терму БЛИЗКО - 0,15. Конкретное определение степени принадлежности возможно только при работе с экспертами. При обсуждении вопроса о термах лингвистической переменной интересно прикинуть, сколько всего термов в переменной необходимо для достаточно точного представления физической величины. В настоящее время сложилось мнение, что для большинства приложений достаточно 3-7 термов на каждую переменную. Минимальное значение числа термов вполне оправданно. Такое определение содержит два экстремальных значения (минимальное и максимальное) и среднее. Для большинства применений этого вполне достаточно. Что касается максимального количества термов, то оно не ограничено и зависит целиком от приложения и требуемой точности описания системы. Число же 7 обусловлено емкостью кратковременной памяти человека, в которой, по современным представлениям, может храниться до семи единиц информации.

1.4 Функции принадлежности

Как уже говорилось, принадлежность каждого точного значения к одному из термов лингвистической переменной определяется посредством функции принадлежности. Ее вид может быть абсолютно произвольным. Сейчас сформировалось понятие о так называемых стандартных функциях принадлежности (см. рис. 2).

Рисунок 2 - Стандартные функции принадлежности

Стандартные функции принадлежности легко применимы к решению большинства задач. Однако если предстоит решать специфическую задачу, можно выбрать и более подходящую форму функции принадлежности, при этом можно добиться лучших результатов работы системы, чем при использовании функций стандартного вида.

Подведу некоторый итог этапа фаззификации и дам некое подобие алгоритма по формализации задачи в терминах нечеткой логики.

Шаг 1. Для каждого терма взятой лингвистической переменной найти числовое значение или диапазон значений, наилучшим образом характеризующих данный терм. Так как это значение или значения являются «прототипом» нашего терма, то для них выбирается единичное значение функции принадлежности.

Шаг 2. После определения значений с единичной принадлежностью необходимо определить значение параметра с принадлежностью «0» к данному терму. Это значение может быть выбрано как значение с принадлежностью «1» к другому терму из числа определенных ранее.

Шаг 3. После определения экстремальных значений нужно определить промежуточные значения. Для них выбираются П- или Л-функции из числа стандартных функций принадлежности.

Шаг 4. Для значений, соответствующих экстремальным значениям параметра, выбираются S- или Z-функции принадлежности.

Далее о составлении нечетких правил, которые являются путеводителем в задачах нечеткости.

1.5 Разработка нечетких правил

На этом этапе определяются продукционные правила, связывающие лингвистические переменные. Совокупность таких правил описывает стратегию управления, применяемую в данной задаче.

Большинство нечетких систем используют продукционные правила для описания зависимостей между лингвистическими переменными. Типичное продукционное правило состоит из антецедента (часть ЕСЛИ …) и консеквента (часть ТО …). Антецедент может содержать более одной посылки. В этом случае они объединяются посредством логических связок И или ИЛИ.

Процесс вычисления нечеткого правила называется нечетким логическим выводом и подразделяется на два этапа: обобщение и заключение.

Пусть мы имеем следующее правило:

ЕСЛИ ДИСТАНЦИЯ=средняя И

УГОЛ=малый, ТО МОЩНОСТЬ=средняя.

Обращусь к примеру с контейнерным краном и рассмотрю ситуацию, когда расстояние до платформы равно 20 метрам, а угол отклонения контейнера на тросе крана равен четырем градусам. После фаззификации исходных данных получим, что степень принадлежности расстояния в 20 метров к терму СРЕДНЯЯ лингвистической переменной ДИСТАНЦИЯ равна 0,9, а степень принадлежности угла в 4 градуса к терму МАЛЫЙ лингвистической переменной УГОЛ равна 0,8.

На первом шаге логического вывода необходимо определить степень принадлежности всего антецедента правила. Для этого в нечеткой логике существуют два оператора: MIN(…) и MAX(…). Первый вычисляет минимальное значение степени принадлежности, а второй - максимальное значение. Когда применять тот или иной оператор, зависит от того, какой связкой соединены посылки в правиле. Если использована связка И, применяется оператор MIN(…). Если же посылки объединены связкой ИЛИ, необходимо применить оператор MAX(…). Ну а если в правиле всего одна посылка, операторы вовсе не нужны. Для нашего примера применю оператор MIN(…), так как использована связка И. Получим следующее:

MIN(0,9;0,8)=0,8.

Следовательно, степень принадлежности антецедента такого правила равна 0,8. Операция, описанная выше, отрабатывается для каждого правила в базе нечетких правил.

Следующим шагом является собственно вывод или заключение. Подобным же образом посредством операторов MIN/MAX вычисляется значение консеквента. Исходными данными служат вычисленные на предыдущем шаге значения степеней принадлежности антецедентов правил.

После выполнения всех шагов нечеткого вывода мы находим нечеткое значение управляющей переменной. Чтобы исполнительное устройство смогло отработать полученную команду, необходим этап управления, на котором мы избавляемся от нечеткости и который называется дефаззификацией.

1.6 Дефаззификация (устранение нечеткости)

На этом этапе осуществляется переход от нечетких значений величин к определенным физическим параметрам, которые могут служить командами исполнительному устройству.

Результат нечеткого вывода, конечно же, будет нечетким. В примере с краном команда для электромотора крана будет представлена термом СРЕДНЯЯ (мощность), но для исполнительного устройства это ровно ничего не значит.

Для устранения нечеткости окончательного результата существует несколько методов. Рассмотрим некоторые из них. Аббревиатура, стоящая после названия метода, происходит от сокращения его английского эквивалента.

1.7 Метод центра максимума (СоМ)

Так как результатом нечеткого логического вывода может быть несколько термов выходной переменной, то правило дефаззификации должно определить, какой из термов выбрать. Работа правила СоМ показана на рис. 3.

Рисунок 3 - Работа правила центра максимума

1.8 Метод наибольшего значения (МоМ)

При использовании этого метода правило дефаззификации выбирает максимальное из полученных значений выходной переменной. Работа метода ясна из рис. 5.

Рисунок 4 - Работа правила наибольшего значения

1.9 Метод центроида (СоА)

В этом методе окончательное значение определяется как проекция центра тяжести фигуры, ограниченной функциями принадлежности выходной переменной с допустимыми значениями. Работу правила можно видеть на рис. 6.

Рисунок 5 - Работа правила центроида

Основные шаги разработки нечеткой системы управления с использованием CAD-системы fuzzy TECH 3.0

Процесс разработки проекта нечеткой системы управления на fuzzy TECH разбивается, как уже говорилось, на четыре основных этапа. Все они схематично показаны на рис. 6.

Рисунок 6 - Процесс разработки проекта нечеткой системы управления на fuzzy TECH

2 Описание прикладной задачи

Есть исходные данные: розничные продажи бензина в США и объем авиаперевозок. Необходимо выполнить следующее: написать программу, используя пакет MATLAB, которая сможет прогнозировать объемы продаж и авиаперевозок. Каким образом она должна это сделать: исходные данные представляют собой ряд. Мне необходимо составить модель, взять половину исходного ряда и обучить ее. Далее спрогнозировать вторую половину ряда и сравнить в исходными величинами. Сравнение выполнялось на графиках ,которые представлены ниже.

2.1 Результаты решения прикладной задачи

Рисунок 7 - Начальные данные авиаперевозок

Рисунок 8 - Спрогнозированные авиаперевозки

Рисунок 9 - Ошибка прогнозирования

Как видно из графиков исходных и спрогнозированных авиаперевозок - они очень похожи, по рисунку 9 видно, что ошибка очень маленькая, это значит, что прогнозирование было довольно точным с мизерной погрешностью. На рисунке 8 спрогнозированные программой величины начинаются с предела 80 до 140. От 0 до 80 взяты исходные значения.

Рисунок 10 - Начальные данные розничных продаж бензина

Рисунок 11 - Спрогнозированные продажи бензина

Рисунок 12 - Ошибка прогнозирования

Здесь, так же как по предыдущим графикам наблюдается практически 100% совпадение спрогнозированных и исходных величин с такой же незначительной ошибкой прогнозирования. Все это говорит о том, что данная программа, написанная с помощью MATLAB, может достаточно точно делать прогноз данных. Текст программы представлен в приложении А

ЗАКЛЮЧЕНИЕ

Нечеткая логика все больше и больше завоевывает признание по всему миру. В бизнесе и финансах нечеткая логика получила признание после того, как в 1988 году экспертная система на основе нечетких правил для прогнозирования финансовых индикаторов единственная предсказала биржевой крах. И количество успешных фаззи-применений в настоящее время исчисляется тысячами. И в программе, написанной и рассмотренной в этой работе для прогнозирования нечетких множеств, нечеткая логика показала себя с лучшей стороны, дав результатом отличный прогноз, практически на 100% совпадающий с реальными величинами.

БИБЛИОГРАФИЯ

1. Заде Л. Понятие лингвистической переменной и его применение к принятию приближенных решений. - М.: Мир, 1976.

2. Круглов В.В., Дли М.И. Интеллектуальные информационные системы: компьютерная поддержка систем нечеткой логики и нечеткого вывода. - М.: Физматлит, 2002.

3. Леоленков А.В. Нечеткое моделирование в среде MATLAB и fuzzyTECH. - СПб., 2003.

4. Рутковская Д., Пилиньский М., Рутковский Л. Нейронные сети, генетические алгоритмы и нечеткие системы. - М., 2004.

Приложение А

Текст программного модуля

Текст основной программы nirs_prog.m

ПРИЛОЖЕНИЕ А (ОБЯЗАТЕЛЬНОЕ)ПРИЛОЖЕНИЕ А (ОБЯЗАТЕЛЬНОЕ)

Листинг программы

load mgdata.dat

figure;

t = mgdata(:, 1); x = mgdata(:, 2); plot(t, x);

for t=118:1117,

Data(t-117,:)=[x(t-18) x(t-12) x(t-6) x(t) x(t+6)];

end

trnData=Data(1:250, :);

chkData=Data(251:end, :);

fismat = genfis1(trnData);

figure;

subplot(2,2,1)

plotmf(fismat, 'input', 1)

subplot(2,2,2)

plotmf(fismat, 'input', 2)

subplot(2,2,3)

plotmf(fismat, 'input', 3)

subplot(2,2,4)

plotmf(fismat, 'input', 4)

[fismat1,error1,ss,fismat2,error2] = anfis(trnData,fismat,[],[],chkData);

figure;

subplot(2,2,1)

plotmf(fismat2, 'input', 1)

subplot(2,2,2)

plotmf(fismat2, 'input', 2)

subplot(2,2,3)

plotmf(fismat2, 'input', 3)

subplot(2,2,4)

plotmf(fismat2, 'input', 4)

figure;

plot([error1; error2]);

anfis_output = evalfis([trnData; chkData], fismat2);

index = 125:1124;

subplot(211), plot(t(index), [x(index) anfis_output]);

subplot(212), plot(t(index), x(index) - anfis_output);


Подобные документы

  • Системы, основанные на принципах. Базовые понятия нечеткой логики. Общая структура устройств нечеткой логики. Микроконтроллер и процессор нечеткой логики. Определение входных и выходных переменных системы. Преимущества применения нечеткой логики.

    контрольная работа [596,8 K], добавлен 01.10.2016

  • Разработка и тестирование интеллектуальной системы по определению маневра расхождения судна с препятствием на базе нечеткой логики с помощью программы FuzzTECH. Описание входных и выходных лингвистических переменных. Система правил нечетких продукций.

    лабораторная работа [3,9 M], добавлен 06.04.2014

  • Дискретные системы автоматического управления как системы, содержащие элементы, которые преобразуют непрерывный сигнал в дискретный. Импульсный элемент (ИЭ), его математическое описание. Цифровая система автоматического управления, методы ее расчета.

    реферат [62,3 K], добавлен 18.08.2009

  • Анализ исходной системы автоматического управления, определение передаточной функции и коэффициентов. Анализ устойчивости исходной системы с помощью критериев Рауса, Найквиста. Синтез корректирующих устройств и анализ синтезированных систем управления.

    курсовая работа [442,9 K], добавлен 19.04.2011

  • Элементы автоматического управления. Проектирование цикловой дискретной системы автоматического управления с путевым контроллером. Исходный граф, схема механизмов и граф функционирования устройства. Синтез логических функций управления выходами.

    контрольная работа [783,3 K], добавлен 17.08.2013

  • Технические средства автоматизации. Идентификация канала управления, возмущающих воздействий. Определение передаточных функций АСР. Расчёт системы управления с помощью логарифмических амплитудных характеристик. Анализ работы системы с ПИ регулятором.

    контрольная работа [240,5 K], добавлен 22.04.2011

  • Выполнение синтеза и анализа следящей системы автоматического управления с помощью ЛАЧХ и ЛФЧХ. Определение типов звеньев передаточных функций системы и устойчивости граничных параметров. Расчет статистических и логарифмических характеристик системы.

    курсовая работа [1,9 M], добавлен 01.12.2010

  • Расчёт линейной, нелинейной, дискретной, стохастической систем автоматического управления. Передаточные функции разомкнутой и замкнутой систем. Расчёт следящей системы. Расчет динамики системы с помощью теоремы Сильвестра. Наличие автоколебаний.

    курсовая работа [9,9 M], добавлен 10.01.2011

  • Описание объекта автоматического управления в переменных состояниях. Определение дискретной передаточной функции замкнутой линеаризованной аналого-цифровой системы. Графики переходной характеристики, сигнала управления и частотных характеристик системы.

    курсовая работа [1,7 M], добавлен 21.11.2012

  • Структурная схема системы автоматического управления (САУ). Ее статическая и переходная характеристика. Качество процесса управления. Определение показателей качества по расположению нулей и полюсов передаточной функции САУ в комплексной плоскости.

    методичка [273,7 K], добавлен 29.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.