Системы прямого цифрового синтеза сигналов. Параметры цифро-аналоговых преобразователей
Прямой цифровой синтез, его схема, область применения, значение. Параметры цифро-аналоговых преобразователей: статистические (разрешающая способность, погрешность полной шкалы и смещения нуля, нелинейность) и динамические. Шумы и причины их появления.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 14.02.2009 |
Размер файла | 98,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
кафедра РЭС
реферат на тему:
«Системы прямого цифрового синтеза сигналов. Параметры ЦАП»
МИНСК, 2009
Системы прямого цифрового синтеза сигналов
Важной областью применения ЦАП является синтез аналоговых сигналов необходимой формы. Аналоговые генераторы сигналов - синусоидальной, треугольной и прямоугольной форм - имеют низкую точность и стабильность, не могут управляться от ЭВМ. В последние годы получили развитие системы прямого цифрового синтеза сигналов, обеспечивающие высокую точность задания частоты и начальной фазы сигналов, а также высокую верность воспроизведения их формы. Более того, эти системы позволяют генерировать сигналы большого многообразия форм, в том числе и форм, задаваемых пользователем. Упрощенная блок-схема генератора прямого цифрового синтеза сигналов приведена на рис. 1.
Рис. 1.
В принципе, системы прямого цифрового синтеза просты. Более того, теория и основные способы построения таких систем известны уже около 30 лет. Правда, только недавно появились ЦАП и специализированные аналого-цифровые ИМС, подходящие для синтеза сигналов в широкой полосе частот.
Схема прямого цифрового синтеза содержит три основных блока: генератор фазового угла, память и ЦАП. Генератор фазового угла в типичном случае представляет собой накапливающий сумматор с регистром. Работает он просто как регистр фазы, содержимое которого получает приращение на некоторый фазовый угол через заданные интервалы времени. Приращение фазы Dj загружается в виде цифрового кода во входные регистры. Память играет роль таблицы функций. Код текущей фазы поступает на ее адресные входы, а с выхода данных на вход ЦА-преобразователя поступает код, соответствующий текущему значению заданной функции. ЦАП в свою очередь формирует аналоговый сигнал.
Регистр содержит текущую фазу выходного сигнала в виде целого числа, которое будучи поделено на 2N, где N -разрядность сумматора, равно доле периода. Увеличение разрядности регистра повышает только разрешающую способность этой доли. Частота выходного сигнала равна произведению частоты тактов fтакт на приращение фазы в каждом периоде тактов. При использовании N-разрядного сумматора частота выходного сигнала будет равна
Генераторы прямого синтеза выпускаются в виде ИМС. В частности, микросхема AD9850, упрощенная структура которой представлена на рис. 1, содержит 32-разрядный генератор фазового угла и 10-разрядный ЦАП. Загрузка приращения фазы осуществляется по 8-разрядной шине данных побайтово в четыре входных регистра. Память содержит таблицу синусов. Максимально допустимая тактовая частота составляет 125 МГц. При этом разрешение по частоте составляет 0,0291 Гц. Быстрый интерфейс позволяет менять частоту выходного сигнала до 23 миллионов раз в секунду.
Параметры ЦАП
При последовательном возрастании значений входного цифрового сигнала D(t) от 0 до 2N-1 через единицу младшего разряда (ЕМР) выходной сигнал Uвых(t) образует ступенчатую кривую. Такую зависимость называют обычно характеристикой преобразования ЦАП. В отсутствие аппаратных погрешностей средние точки ступенек расположены на идеальной прямой 1 (рис. 2), которой соответствует идеальная характеристика преобразования. Реальная характеристика преобразования может существенно отличаться от идеальной размерами и формой ступенек, а также расположением на плоскости координат. Для количественного описания этих различий существует целый ряд параметров.
Рис. 2.
Статические параметры
Разрешающая способность - приращение Uвых при преобразовании смежных значений Dj, т.е. отличающихся на ЕМР. Это приращение является шагом квантования. Для двоичных кодов преобразования номинальное значение шага квантования h=Uпш/(2N-1), где Uпш - номинальное максимальное выходное напряжение ЦАП (напряжение полной шкалы), N - разрядность ЦАП. Чем больше разрядность преобразователя, тем выше его разрешающая способность.
Погрешность полной шкалы - относительная разность между реальным и идеальным значениями предела шкалы преобразования при отсутствии смещения нуля.
Является мультипликативной составляющей полной погрешности. Иногда указывается соответствующим числом ЕМР.
Погрешность смещения нуля - значение Uвых, когда входной код ЦАП равен нулю. Является аддитивной составляющей полной погрешности. Обычно указывается в милливольтах или в процентах от полной шкалы:
Нелинейность - максимальное отклонение реальной характеристики преобразования Uвых(D) от оптимальной (линия 2 на рис. 2). Оптимальная характеристика находится эмпирически так, чтобы минимизировать значение погрешности нелинейности. Нелинейность обычно определяется в относительных единицах, но в справочных данных приводится также и в ЕМР. Для характеристики, приведенной на рис. 2.
Дифференциальная нелинейность - максимальное изменение (с учетом знака) отклонения реальной характеристики преобразования Uвых(D) от оптимальной при переходе от одного значения входного кода к другому смежному значению. Обычно определяется в относительных единицах или в ЕМР. Для характеристики, приведенной на рис. 2,
Монотонность характеристики преобразования - возрастание (уменьшение) выходного напряжения ЦАП Uвых при возрастании (уменьшении) входного кода D. Если дифференциальная нелинейность больше относительного шага квантования h/Uпш, то характеристика преобразователя немонотонна.
Температурная нестабильность ЦА-преобразователя характеризуется температурными коэффициентами погрешности полной шкалы и погрешности смещения нуля.
Погрешности полной шкалы и смещения нуля могут быть устранены калибровкой (подстройкой). Погрешности нелинейности простыми средствами устранить нельзя.
Динамические параметры
Динамические параметры ЦАП определяются по изменению выходного сигнала при скачкообразном изменении входного кода, обычно от величины "все нули" до "все единицы" (рис. 3).
Рис. 3.
Время установления - интервал времени от момента изменения входного кода (на рис. 3 t=0) до момента, когда в последний раз выполняется равенство
|Uвых-Uпш|=d/2,
Скорость нарастания - максимальная скорость изменения Uвых(t) во время переходного процесса. Определяется как отношение приращения ?Uвых ко времени ?, за которое произошло это приращение. Обычно указывается в технических характеристиках ЦАП с выходным сигналом в виде напряжения. У ЦАП с токовым выходом этот параметр в большой степени зависит от типа выходного ОУ.
Для перемножающих ЦАП с выходом в виде напряжения часто указываются частота единичного усиления и мощностная полоса пропускания, которые в основном определяются свойствами выходного усилителя.
Шумы ЦАП
Шум на выходе ЦАП может появляться по различным причинам, вызываемым физическими процессами, происходящими в полупроводниковых устройствах. Для оценки качества ЦАП с высокой разрешающей способностью принято использовать понятие среднеквадратического значения шума. Измеряются обычно в нВ/(Гц)1/2 в заданной полосе частот.
Выбросы (импульсные помехи) - крутые короткие всплески или провалы в выходном напряжении, возникающие во время смены значений выходного кода за счет несинхронности размыкания и замыкания аналоговых ключей в разных разрядах ЦАП. Например, если при переходе от значения кода 011...111 к значению 100...000 ключ самого старшего разряда ЦА-преобразователя с суммированием весовых токов откроется позже, чем закроются ключи младших разрядов, то на выходе ЦАП некоторое время будет существовать сигнал, соответствующий коду 000...000.
Выбросы характерны для быстродействующих ЦАП, где сведены к минимуму емкости, которые могли бы их сгладить. Радикальным способом подавления выбросов является использование устройств выборки-хранения. Выбросы оцениваются по их площади (в пВ*с).
В табл. 1 приведены важнейшие характеристики некоторых типов цифро-аналоговых преобразователей.
Таблица 1
Наимено-вание ЦАП |
Разряд-ность, бит |
Число кана-лов |
Тип вы-хода |
Время установ., мкс |
Интер-фейс |
Внутрен-ний ИОН |
Напряж. питания, В |
Мощность потр. мВт |
Примечание |
|
ЦАП широкого применения |
||||||||||
572ПА1 |
10 |
1 |
I |
5 |
- |
Нет |
5; 15 |
30 |
На МОП-ключах, перемножающий |
|
МАХ504 |
10 |
1 |
U |
25 |
Посл. |
Есть |
5 или +/-5 |
2 |
На МОП-ключах, с инверсной резистивной матрицей |
|
594ПА1 |
12 |
1 |
I |
3,5 |
- |
Нет |
+5, -15 |
600 |
На токовых ключах |
|
МАХ527 |
12 |
4 |
U |
3 |
Парал. |
Нет |
+/-5 |
110 |
Загрузка входных слов по 8-ми выводной шине |
|
DAC8512 |
12 |
1 |
U |
16 |
Посл. |
Есть |
5 |
5 |
|
|
AD7841 |
14 |
8 |
U |
20 |
Парал. |
Нет |
5; +/-15 |
420 |
На МОП-ключах, с инверсной резистивной матрицей |
|
AD8600 |
8 |
16 |
U |
2 |
Парал. |
Нет |
5 или +/-5 |
120 |
На МОП-ключах, с инверсной резистивной матрицей |
|
AD8403 |
8 |
4 |
- |
2 |
Посл. |
Нет |
5 |
0,028 |
Цифровой потенциометр |
|
Микромощные ЦАП |
||||||||||
МАХ515 |
10 |
1 |
U |
25 |
Посл. |
Нет |
5 |
0,7 |
Перемножающий, в 8-ми выводном корпусе |
|
МАХ530 |
12 |
1 |
U |
25 |
Парал. |
Есть |
5 или +/-5 |
0,75 |
Перемножающий, потребление - 0,2 мВт в экономичном режиме |
|
МАХ550В |
8 |
1 |
U |
4 |
Посл. |
Нет |
2,5:5 |
0,2 |
Потребление 5 мкВт в экономичном режиме |
|
AD7390 |
12 |
1 |
U |
60 |
Посл. |
Нет |
2,7:5 |
0,5 |
Перемножающий, SPI-совместимый интерфейс |
|
AD7943 |
12 |
1 |
I |
0,6 |
Посл. |
Нет |
5 |
0,025 |
Перемножающий |
|
AD5321 |
12 |
1 |
U |
10 |
Посл. |
Нет |
5 или 3 |
0,75 (5 ч) |
6-ти выводной корпус, потребление 0,15 мкВт в экономичном режиме. I2C-совместимый интерфейс |
|
Прецизионные ЦАП |
||||||||||
AD7846 |
16 |
1 |
U |
9 |
Парал. |
Нет |
+/-15 |
100 |
Интегральная нелинейность <= 2 ЕМР |
|
AD7244 |
14 |
2 |
U |
4 |
Посл. |
Есть |
+5 |
200 |
Интегральная нелинейность <= 2 ЕМР |
|
AD760 |
18 |
1 |
U |
13 |
Посл./ Парал. |
Есть |
+5,+/-15 |
700 |
Интегральная нелинейность <= 1 ЕМР |
|
МАХ541 |
16 |
1 |
U |
1 |
Посл. |
Нет |
5 |
1,5 |
Интегральная нелинейность <= 1 ЕМР. 8-ми выв. корпус. Самокалибровка |
|
LTC1650 |
16 |
1 |
U |
4 |
Посл. |
Нет |
+/-5 |
50 |
Перемножающий |
|
Быстродействующие ЦАП |
||||||||||
AD9720 |
10 |
1 |
I |
4,5 нс |
Парал. |
Есть |
-5,2 |
1100 |
Площадь выбросов <= 1,5 пВс |
|
МАХ555 |
12 |
1 |
U |
0,5 нс (0,024%) |
Парал. |
Нет |
-5,2 |
980 |
Перемножающий. Площадь выбросов <= 5,6 пВс. Rвых=50 Ом |
|
AD9774 |
14 |
1 |
I |
35 |
Парал. |
Есть |
5 |
1125 |
Площадь выбросов <= 5 пВс |
|
AD768 |
16 |
1 |
I |
25 нс |
Парал. |
Есть |
+/- 5 |
460 |
Интегральная нелинейность <= 4 ЕМР |
|
1118ПА3 |
8 |
1 |
I |
10 нс |
- |
Есть |
5, -5,2 |
500 |
По входам совместим с ЭСЛ |
ЛИТЕРАТУРА
Лидовский В.И. Теория информации. - М., «Высшая школа», 2002г. - 120с.
Метрология и радиоизмерения в телекоммуникационных системах. Учебник для ВУЗов. / В.И.Нефедов, В.И.Халкин, Е.В.Федоров и др. - М.: Высшая школа, 2001 г. - 383с.
Цапенко М.П. Измерительные информационные системы. - . - М.: Энергоатом издат, 2005. - 440с.
Зюко А.Г. , Кловский Д.Д., Назаров М.В., Финк Л.М. Теория передачи сигналов. М: Радио и связь, 2001 г. -368 с.
Б. Скляр. Цифровая связь. Теоретические основы и практическое применение. Изд. 2-е, испр.: Пер. с англ. - М.: Издательский дом «Вильямс», 2003 г. - 1104 с.
Подобные документы
Характеристика основных типов цифро-аналоговых преобразователей. Особенности программирования портов ввода вывода микроконтроллера. Составление программ, синтезирующих аналоговый сигнал заданной формы. Схемы резистивной матрицы, листинг программы.
лабораторная работа [226,1 K], добавлен 22.11.2012Задачи применения аналого-цифровых преобразователей в радиопередатчиках. Особенности цифро-аналоговых преобразователей (ЦАП) для работы в низкочастотных трактах, системах управления и специализированных быстродействующих ЦАП с высоким разрешением.
курсовая работа [825,8 K], добавлен 15.01.2011Способы построения аналоговых перемножителей. Влияние технологических погрешностей аналоговых компонентов на характеристики и параметры перемножителей. Схемотехнические способы их снижения. Сравнительный анализ схем преобразователей "напряжение-ток".
дипломная работа [3,5 M], добавлен 26.09.2010Разработка системы контроля технологических параметров хранилища лука. Электрические параметры и эксплуатационные характеристики микроэлектронных цифро-аналоговых и аналого-цифровых преобразователей. Обзор устройств и применение датчиков температуры.
курсовая работа [181,6 K], добавлен 07.02.2016Исследование принципов разработки генератора аналоговых сигналов. Анализ способов перебора адресов памяти генератора аналоговых сигналов. Цифровая генерация аналоговых сигналов. Проектирование накапливающего сумматора для генератора аналоговых сигналов.
курсовая работа [513,0 K], добавлен 18.06.2013Применение аналого-цифровых преобразователей (АЦП) для преобразования непрерывных сигналов в дискретные. Осуществление преобразования цифрового сигнала в аналоговый с помощью цифроаналоговых преобразователей (ЦАП). Анализ принципов работы АЦП и ЦАП.
лабораторная работа [264,7 K], добавлен 27.01.2013Параметры цифрового потока формата 4:2:2. Разработка принципиальной электрической схемы. Цифро-аналоговый преобразователь, фильтр нижних частот, усилитель аналогового сигнала, выходной каскад, кодер системы PAL. Разработка топологии печатной платы.
дипломная работа [615,9 K], добавлен 19.10.2015Обзор генераторов сигналов. Структурная схема и элементная база устройства. Разработка печатной платы модуля для изучения генератора сигналов на базе прямого цифрового синтеза. Выбор технологии производства. Конструкторский расчет; алгоритм программы.
дипломная работа [1,7 M], добавлен 25.04.2015Статистические характеристики и параметры передаваемого сообщения. Характеристики и параметры аналого-цифрового преобразования сообщения. Средняя квадратическая погрешность квантования. Основные характеристики и параметры сигналов дискретной модуляции.
курсовая работа [3,1 M], добавлен 24.10.2012Проектирование цифрового генератора аналоговых сигналов. Разработка структурной, электрической и функциональной схемы устройства, блок-схемы опроса кнопок и работы генератора. Схема делителя с выходом в виде напряжения на инверсной резистивной матрице.
курсовая работа [268,1 K], добавлен 05.08.2011