Понятие открытая система и проблемы стандартизации

Обмен двоичными сигналами по линиям связи в локальных сетях, сетевые адаптеры. Кодирование и декодирование информации, синхронизирование передачи электромагнитных сигналов по линиям связи. Типовые топологии физических связей. Адресация узлов сети.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 01.02.2009
Размер файла 592,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Понятие открытая система и проблемы стандартизации

Универсальный тезис о пользе стандартизации, справедливый для всех отраслей, в компьютерных сетях приобретает особое значение. Суть сети - это соединение разного оборудования, а значит, проблема совместимости является одной из наиболее острых. Без принятия всеми производителями общепринятых правил построения оборудования прогресс в деле строительства сетей был бы невозможен. Поэтому все развитие компьютерной отрасли в конечном счете отражено в стандартах - любая новая технология только тогда приобретает законный статус, когда ее содержание закрепляется в соответствующем стандарте.

В компьютерных сетях идеологической основой стандартизации является многоуровневый подход к разработке средств сетевого взаимодействия. Именно на основе этого подхода была разработана стандартная семиуровневая модель взаимодействия открытых систем, ставшая своего рода универсальным языком сетевых специалистов.

Многоуровневый подход. Протокол. Интерфейс. Стек протоколов

Организация взаимодействия между устройствами в сети является сложной задачей. Как известно, для решения сложных задач используется универсальный прием - декомпозиция, то есть разбиение одной сложной задачи на несколько более простых задач-модулей (рис. 1.20). Процедура декомпозиции включает в себя четкое определение функций каждого модуля, решающего отдельную задачу, и интерфейсов между ними. В результате достигается логическое упрощение задачи, а кроме того, появляется возможность модификации отдельных модулей без изменения остальной части системы.

Рис. 1.20. Пример декомпозиции задачи

При декомпозиции часто используют многоуровневый подход. Он заключается в следующем. Все множество модулей разбивают на уровни. Уровни образуют иерархию, то есть имеются вышележащие и нижележащие уровни (рис. 1.21). Множество модулей, составляющих каждый уровень, сформировано таким образом, что для выполнения своих задач они обращаются с запросами только к модулям непосредственно примыкающего нижележащего уровня. С другой стороны, результаты работы всех модулей, принадлежащих некоторому уровню, могут быть переданы только модулям соседнего вышележащего уровня. Такая иерархическая декомпозиция задачи предполагает четкое определение функции каждого уровня и интерфейсов между уровнями. Интерфейс определяет набор функций, которые нижележащий уровень предоставляет вышележащему. В результате иерархической декомпозиции достигается относительная независимость уровней, а значит, и возможность их легкой замены.

Рис. 1.21. Многоуровневый подход - создание иерархии задач

Средства сетевого взаимодействия, конечно, тоже могут быть представлены в виде иерархически организованного множества модулей. При этом модули нижнего уровня могут, например, решать все вопросы, связанные с надежной передачей электрических сигналов между двумя соседними узлами. Модули более высокого уровня организуют транспортировку сообщений в пределах всей сети, пользуясь для этого средствами упомянутого нижележащего уровня. А на верхнем уровне работают модули, предоставляющие пользователям доступ к различным службам - файловой, печати и т. п. Конечно, это только один из множества возможных вариантов деления общей задачи организации сетевого взаимодействия на частные подзадачи.

Многоуровневый подход к описанию и реализации функций системы применяется не только в отношении сетевых средств. Такая модель функционирования используется, например, в локальных файловых системах, когда поступивший запрос на доступ к файлу последовательно обрабатывается несколькими программными уровнями (рис. 1.22). Запрос вначале анализируется верхним уровнем, на котором осуществляется последовательный разбор составного символьного имени файла и определение уникального идентификатора файла. Следующий уровень находит по уникальному имени все основные характеристики файла: адрес, атрибуты доступа и т. п. Затем на более низком уровне осуществляется проверка прав доступа к этому файлу, а далее, после расчета координат области файла, содержащей требуемые данные, выполняется физический обмен с внешним устройством с помощью драйвера диска.

Рис. 1.22. Многоуровневая модель файловой системы

Многоуровневое представление средств сетевого взаимодействия имеет свою специфику, связанную с тем, что в процессе обмена сообщениями участвуют две машины, то есть в данном случае необходимо организовать согласованную работу двух иерархий . При передаче сообщений оба участника сетевого обмена должны принять множество соглашений. Например, они должны согласовать уровни и форму электрических сигналов, способ определения длины сообщений, договориться о методах контроля достоверности и т. п. Другими словами, соглашения должны быть приняты для всех уровней, начиная от самого низкого - уровня передачи битов - до самого высокого, реализующего сервис для пользователей сети.

На рис. 1.23 показана модель взаимодействия двух узлов. С каждой стороны средства взаимодействия представлены четырьмя уровнями. Процедура взаимодействия этих двух узлов может быть описана в виде набора правил взаимодействия каждой пары соответствующих уровней обеих участвующих сторон. Формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называются протоколом.

Рис. 1.23. Взаимодействие двух узлов

Модули, реализующие протоколы соседних уровней и находящиеся в одном узле, также взаимодействуют друг с другом в соответствии с четко определенными правилами и с помощью стандартизованных форматов сообщений. Эти правила принято называть интерфейсом. Интерфейс определяет набор сервисов, предоставляемый данным уровнем соседнему уровню. В сущности, протокол и интерфейс выражают одно и то же понятие, но традиционно в сетях за ними закрепили разные области действия: протоколы определяют правила взаимодействия модулей одного уровня в разных узлах, а интерфейсы - модулей соседних уровней в одном узле.

Средства каждого уровня должны отрабатывать, во-первых, свой собственный протокол, а во-вторых, интерфейсы с соседними уровнями.

Иерархически организованный набор протоколов, достаточный для организации взаимодействия узлов в сети, называется стеком коммуникационных протоколов.

Коммуникационные протоколы могут быть реализованы как программно, так и аппаратно. Протоколы нижних уровней часто реализуются комбинацией программных и аппаратных средств, а протоколы верхних уровней - как правило, чисто программными средствами.

Программный модуль, реализующий некоторый протокол, часто для краткости также называют протоколом . При этом соотношение между протоколом - формально определенной процедурой и протоколом - программным модулем, реализующим эту процедуру, аналогично соотношению между алгоритмом решения некоторой задачи и программой, решающей эту задачу.

Понятно, что один и тот же алгоритм может быть запрограммирован с разной степенью эффективности. Точно так же и протокол может иметь несколько программных реализации. Именно поэтому при сравнении протоколов следует учитывать не только логику их работы, но и качество программных решений. Более того, на эффективность взаимодействия устройств в сети влияет качество всей совокупности протоколов, составляющих стек, в частности, насколько рационально распределены функции между протоколами разных уровней и насколько хорошо определены интерфейсы между ними.

Протоколы реализуются не только компьютерами, но и другими сетевыми устройствами - концентраторами, мостами, коммутаторами, маршрутизаторами и т. д. Действительно, в общем случае связь компьютеров в сети осуществляется не напрямую, а через различные коммуникационные устройства. В зависимости от типа устройства в нем должны быть встроенные средства, реализующие тот или иной набор протоколов.

Чтобы еще раз пояснить понятия протокол и интерфейс , рассмотрим пример, не имеющий отношения к вычислительным сетям, а именно обсудим взаимодействие двух предприятий А и В; связанных между собой деловым сотрудничеством. Между предприятиями существуют многочисленные договоренности и соглашения, такие, например, как регулярные поставки продукции одного предприятия другому. В соответствии с этой договоренностью начальник отдела продаж предприятия А регулярно в начале каждого месяца посылает официальное сообщение начальнику отдела закупок предприятия В о том, сколько и какого товара может быть поставлено в этом месяце. В ответ на это сообщение начальник отдела закупок предприятия В посылает в ответ заявку установленного образца на требуемое количество продукции. Возможно, процедура взаимодействия этих начальников включает дополнительные согласования, в любом случае существует установленный порядок взаимодействия, который можно считать протоколом уровня начальников . Начальники посылают свои сообщения и заявки через своих секретарей. Порядок взаимодействия начальника и секретаря соответствует понятию межуровневого интерфейса начальник - секретарь. На предприятии А обмен документами между начальником и секретарем идет через специальную папку, а на предприятии В начальник общается с секретарем по факсу. Таким образом, интерфейсы начальник - секретарь на этих двух предприятиях отличаются.

Проблема установления соответствия между адресами различных типов, которой занимается служба разрешения имен, может решаться как полностью централизованными, так и распределенными средствами. В случае централизованного подхода в сети выделяется один компьютер (сервер имен), в котором хранится таблица соответствия друг другу имен различных типов, например символьных имен и числовых номеров. Все остальные компьютеры обращаются к серверу имен, чтобы по символьному имени найти числовой номер компьютера, с которым необходимо обменяться данными.

При другом, распределенном подходе, каждый компьютер сам решает задачу установления соответствия между именами. Например, если пользователь указал для узла назначения числовой номер, то перед началом передачи данных компьютер-отправитель посылает всем компьютерам сети сообщение (такое сообщение называется широковещательным) с просьбой опознать это числовое имя. Все компьютеры, получив это сообщение, сравнивают заданный номер со своим собственным. Тот компьютер, у которого обнаружилось совпадение, посылает ответ, содержащий его аппаратный адрес, после чего становится возможным отправка сообщений по локальной сети.

Распределенный подход хорош тем, что не предполагает выделения специального компьютера, который к тому же часто требует ручного задания таблицы соответствия имен. Недостатком распределенного подхода является необходимость широковещательных сообщений - такие сообщения перегружают сеть, так как они требуют обязательной обработки всеми узлами, а не только узлом назначения. Поэтому распределенный подход используется только в небольших локальных сетях. В крупных сетях распространение широковещательных сообщений по всем ее сегментам становится практически нереальным, поэтому для них характерен централизованный подход. Наиболее известной службой централизованного разрешения имен является служба Domain Name System (DNS) сети Internet.

После того как сообщения переданы секретарям, начальников не волнует, каким образом эти сообщения будут перемещаться дальше - обычной или электронной почтой, факсом или нарочным. Выбор способа передачи - это уровень компетенции секретарей, они могут решать этот вопрос, не уведомляя об этом своих начальников, так как их протокол взаимодействия связан только с передачей сообщений, поступающих сверху, и не касается содержания этих сообщений. На рис. 1.24 показано, что в качестве протокола взаимодействия секретарь-секретарь используется обмен письмами. При решении других вопросов начальники могут взаимодействовать по другим правилам-протоколам, но это не повлияет на работу секретарей, для которых не важно, какие сообщения отправлять, а важно, чтобы они дошли до адресата. Итак, в данном случае мы имеем дело с двумя уровнями - уровнем начальников и уровнем секретарей, и каждый из них имеет собственный протокол, который может быть изменен независимо от протокола другого уровня. Эта независимость протоколов друг от друга и делает привлекательным многоуровневый подход.

Рис. 1.24. Пример многоуровневого взаимодействия предприятий

Модель OSI

Из того, что протокол является соглашением, принятым двумя взаимодействующими объектами, в данном случае двумя работающими в сети компьютерами, совсем не следует, что он обязательно является стандартным. Но на практике при реализации сетей стремятся использовать стандартные протоколы. Это могут быть фирменные, национальные или международные стандарты.

В начале 80-х годов ряд международных организаций по стандартизации - ISO, ITU-T и некоторые другие - разработали модель, которая сыграла значительную роль в развитии сетей. Эта модель называется моделью взаимодействия открытых систем (Open System Interconnection, OSI) или моделью OSI. Модель OSI определяет различные уровни взаимодействия систем, дает им стандартные имена и указывает, какие функции должен выполнять каждый уровень. Модель OSI была разработана на основании большого опыта, полученного при создании компьютерных сетей, в основном глобальных, в 70-е годы. Полное описание этой модели занимает более 1000 страниц текста.

В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представительный, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень имеет дело с одним определенным аспектом взаимодействия сетевых устройств.

Модель OSI описывает только системные средства взаимодействия, реализуемые операционной системой, системными утилитами, системными аппаратными средствами. Модель не включает средства взаимодействия приложений конечных пользователей. Свои собственные протоколы взаимодействия приложения реализуют, обращаясь к системным средствам. Поэтому необходимо различать уровень взаимодействия приложений и прикладной уровень.

Следует также иметь в виду, что приложение может взять на себя функции некоторых верхних уровней модели OSI. Например, некоторые СУБД имеют встроенные средства удаленного доступа к файлам. В этом случае приложение, выполняя доступ к удаленным ресурсам, не использует системную файловую службу; оно обходит верхние уровни модели OSI и обращается напрямую к системным средствам, ответственным за транспортировку сообщений по сети, которые располагаются на нижних уровнях модели OSI.

Итак, пусть приложение обращается с запросом к прикладному уровню, например к файловой службе. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата. Обычное сообщение состоит из заголовка и поля данных. Заголовок содержит служебную информацию, которую необходимо передать через сеть прикладному уровню машины-адресата, чтобы сообщить ему, какую работу надо выполнить. В нашем случае заголовок, очевидно, должен содержать информацию о месте нахождения файла и о типе операции, которую необходимо над ним выполнить. Поле данных сообщения может быть пустым или содержать какие-либо данные, например те, которые необходимо записать в удаленный файл. Но для того чтобы доставить эту информацию по назначению, предстоит решить еще много задач, ответственность за которые несут нижележащие уровни.

После формирования сообщения прикладной уровень направляет его вниз по стеку представительному уровню. Протокол представительного уровня на основании информации, полученной из заголовка прикладного уровня, выполняет требуемые действия и добавляет к сообщению собственную служебную информацию - заголовок представительного уровня, в котором содержатся указания для протокола представительного уровня машины-адресата. Полученное в результате сообщение передается вниз сеансовому уровню, который в свою очередь добавляет свой заголовок, и т. д. (Некоторые реализации протоколов помещают служебную информацию не только в начале сообщения в виде заголовка, но и в конце, в виде так называемого концевика .) Наконец, сообщение достигает нижнего, физического уровня, который собственно и передает его по линиям связи машине-адресату. К этому моменту сообщение обрастает заголовками всех уровней (рис. 1.26).

Рис. 1.26. Вложенность сообщений различных уровней

Когда сообщение по сети поступает на машину - адресат, оно принимается ее физическим уровнем и последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует и обрабатывает заголовок своего уровня.

Выводы

· Задачи надежного обмена двоичными сигналами по линиям связи в локальных сетях решают сетевые адаптеры, а в глобальных сетях - аппаратура передачи данных. Это оборудование кодирует и декодирует информацию, синхронизирует передачу электромагнитных сигналов по линиям связи и проверяет правильность передачи.

· Программные средства, реализующие простейшую схему удаленного доступа к файлам, включают классические элементы сетевой операционной системы: сервер, клиент и средства транспортировки сообщений по линии связи.

· Важной характеристикой сети является топология - тип графа, вершинам которого соответствуют компьютеры сети (иногда и другое оборудование, например концентраторы), а ребрам - физические связи между ними. Конфигурация физических связей определяется электрическими соединениями компьютеров между собой и может отличаться от конфигурации логических связей между узлами сети. Логические связи представляют собой маршруты передачи данных между узлами сети.

· Типовыми топологиями физических связей являются: полносвязная, ячеистая, общая шина, кольцевая топология и топология типа звезда.

· Для вычислительных сетей характерны как индивидуальные линии связи между компьютерами, так и разделяемые, когда одна линия связи попеременно используется несколькими компьютерами. В последнем случае возникают как чисто электрические проблемы обеспечения нужного качества сигналов при подключении к одному и тому же проводу нескольких приемников и передатчиков, так и логические проблемы разделения времени доступа к этим линиям.

· Для адресации узлов сети используются три типа адресов: аппаратные адреса, символьные имена, числовые составные адреса. В современных сетях, как правило, одновременно применяются все эти три схемы адресации. Важной сетевой проблемой является задача установления соответствия между адресами различных типов. Эта проблема может решаться как полностью централизованными, так и распределенными средствами.

· Для снятия ограничений на длину сети и количество ее узлов используется физическая структуризация сети с помощью повторителей и концентраторов.

· Для повышения производительности и безопасности сети используется логическая структуризация сети, состоящая в разбиении сети на сегменты таким образом, что основная часть трафика компьютеров каждого сегмента не выходит за пределы этого сегмента. Средствами логической структуризации служат мосты, коммутаторы, маршрутизаторы и шлюзы.


Подобные документы

  • Основные компоненты технической системы передачи информации, аппаратура для коммутации и передачи данных. Интерфейсы доступа к линиям связи. Передача дискретной информации в телекоммуникационных системах, адаптеры для сопряжения компьютера с сетью.

    презентация [1,6 M], добавлен 20.07.2015

  • Принципы построения и структура взаимоувязанной сети связи. Понятие информации, сообщения, сигналов электросвязи. Типовые каналы передачи и их характеристики, принципы многоканальной передачи. Цифровые сигналы: дискретизация, квантование, кодирование.

    дипломная работа [2,4 M], добавлен 17.05.2012

  • Тенденция развития оптических сетей связи. Анализ состояния внутризоновой связи Республики Башкортостан. Принципы передачи информации по волоконно-оптическим линиям связи. Выбор оборудования, оптического кабеля, организация работ по строительству.

    дипломная работа [3,1 M], добавлен 20.10.2011

  • Разработка функциональной схемы блока приемника цифровой системы передачи информации высокочастотным каналом связи по высоковольтным линиям электропередачи. Сохранение преемственности параметров перехода от аналоговой к цифровой форме обработки сигнала.

    дипломная работа [830,0 K], добавлен 14.10.2010

  • Анализ сути технологии BPL - широкополосной связи по линиям электропередач, которая заключается в использовании электрических сетей в качестве среды передачи данных. Технологии, реализующие BPL: Passport от компании Intelogis и PowerPacket от Intellon.

    презентация [237,2 K], добавлен 03.12.2011

  • Предназначение канала связи для передачи сигналов между удаленными устройствами. Способы защиты передаваемой информации. Нормированная амплитудно-частотная характеристика канала. Технические устройства усилителей электрических сигналов и кодирования.

    контрольная работа [337,1 K], добавлен 05.04.2017

  • Структурная схема системы связи и приемника. Выигрыш в отношении сигнал/шум при применении оптимального приемника. Применение импульсно-кодовой модуляции для передачи аналоговых сигналов. Расчет пропускной способности разработанной системы связи.

    курсовая работа [1,1 M], добавлен 09.12.2014

  • Разработка локальной сети передачи данных с выходом в Интернет для небольшого района города. Определение топологии сети связи. Проверка возможности реализации линий связи на медном проводнике трех категорий. Расчет поляризационной модовой дисперсии.

    курсовая работа [733,1 K], добавлен 19.10.2014

  • Этапы разработки структурной схемы системы оперативной связи гарнизона пожарной охраны. Оптимизация сети специальной связи по линиям 01. Особенности определения высоты подъема антенн стационарных радиостанций, обеспечивающих заданную дальность радиосвязи.

    контрольная работа [874,9 K], добавлен 16.07.2012

  • Вероятностное описание символов, аналого-цифровое преобразование непрерывных сигналов. Информационные характеристики источника и канала, блоковое кодирование источника. Кодирование и декодирование кодом Лемпела-Зива. Регенерация цифрового сигнала.

    курсовая работа [1,2 M], добавлен 22.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.