Психофизиологические методы исследования
Основные методы исследования в физиологии и психофизиологии: наблюдение, графическая регистрация физиологических процессов, исследование биоэлектрических явлений, электрическое раздражение органов и тканей, метод острого и хронического эксперимента.
Рубрика | Психология |
Вид | реферат |
Язык | русский |
Дата добавления | 26.11.2010 |
Размер файла | 34,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
10
Реферат
по предмету:
«Психофизиология»
на тему:
«Психофизиологические методы исследования»
Содержание
Введение
Методы исследования в физиологии и психофизиологии
1. Метод наблюдения
2. Графическая регистрация физиологических процессов
3. Исследования биоэлектрических явлений
4. Методы электрического раздражения органов и тканей
5. Химические методы исследования в физиологии
6. Электрическая запись неэлектрических величин
7. Метод острого эксперимента
8. Метод хронического эксперимента
Использование в физиологии методов других наук
Заключение
Литература
Введение
Развитие науки обусловлено успехами применяемых методов. Павловский метод хронического эксперимента создавал принципиально новую науку -- физиологию целостного организма, синтетическую физиологию, которая смогла выявить влияние внешней среды на физиологические процессы, обнаружить изменения функций раз личных органов и систем для обеспечения жизни организма в раз личных условиях.
С появлением современных технических средств исследования процессов жизнедеятельности появилась возможность изучения без предварительных хирургических операций функций многих внутренних органов не только у животных, но и у человека. «Физиологическая хирургия» как методический прием в ряде разделов физиологии оказалась вытесненной современными методами бес кровного эксперимента. Но дело не в том или ином конкретном техническом приеме, а в методологии физиологического мышления. И. П. Павлов создал новую методологию, благодаря чему физиология стала развиваться как синтетическая наука, и ей органически стал присущ системный подход.
Целостный организм неразрывно связан с окружающей его внешней средой и поэтому, как писал еще И. М. Сеченов, в научное определение организма должна входить и среда, влияющая на него. Физиология целостного организма изучает не только внутренние механизмы саморегуляции физиологических процессов, но и механизмы, обеспечивающие непрерывное взаимодействие и неразрывное единство организма и окружающей среды.
Физиология обязана своим возникновением потребностям медицины, а также стремлению человека познать себя, сущность и проявления жизни на различных уровнях ее организации. Потребность сохранения жизни человека была на всех этапах его развития, и уже в древние времена формировались элементарные представления о деятельности организма человека, являясь обобщением накопленного опыта человечества. Отец медицины Гиппократ (460-- 377 гг. до н. э.) представлял организм человека как некое единство жидких сред и психического склада личности, подчеркивал связь человека со средой обитания и то, что движение является основной формой этой связи. Это определяло его подход к комплексному лечению больного. Аналогичный в принципе подход был характерен для врачей древнего Китая, Индии, Ближнего Востока и Европы.
Методы исследования в физиологии и психофизиологии
1. Метод наблюдения
Сравнительно медленное развитие экспериментальной физиологии на протяжении двух столетий после работ В. Гарвея объясняется низким уровнем производства и развития естествознания, а также несовершенством исследования физиологических явлений путем их обычного наблюдения. Подобный методический прием был и остается причиной многочисленных ошибок, так как экспериментатор должен проводить опыт, видеть и запоминать множество сложных процессов и явлений, что представляет собой трудную задачу. О трудностях, которые создает методика простого наблюдения физиологических явлений, красноречиво свидетельствуют слова Гарвея: «Скорость сердечного движения не позволяет различить, как происходит систола и диастола, и поэтому нельзя узнать, в какой момент и в которой части совершается расширение и сжатие. Действительно, я не мог отличить систолы от диастолы, так как у многих животных сердце показывается и исчезает в мгновение ока, с быстротой молнии, так что мне казалось один раз здесь систола, а здесь -- диастола, другой раз -- наоборот. Во всем разность и сбивчивость».
Действительно, физиологические процессы представляют собой динамические явления. Они непрерывно развиваются и изменяются, поэтому непосредственно удается наблюдать лишь 1--2 или, в лучшем случае, 2--3 процесса. Однако чтобы их анализировать, не обходимо установить связь этих явлений с другими процессами, которые при таком способе исследования остаются незамеченными. Вследствие этого простое наблюдение физиологических процессов как метод исследования является источником субъективных ошибок. Обычно наблюдение позволяет установить лишь качественную сторону явлений и лишает возможности исследовать их количественно.
Важной вехой в развитии экспериментальной физиологии было изобретение кимографа и введение метода графической регистрации артериального давления немецким ученым Карлом Людвигом в 1847 г.
2. Графическая регистрация физиологических процессов
Метод графической регистрации ознаменовал новый этап в физиологии. Он позволил осуществить объективную запись изучаемого процесса, сводившую до минимума возможность субъективных ошибок. При этом эксперимент и анализ изучаемого явления можно было проводить в два этапа. Во время самого опыта задача экспериментатора заключалась в том, чтобы получить высококачественные записи -- кривые -- килограммы. Анализ полученных данных можно было производить позже, когда внимание экспериментатора уже не отвлекалось на проведение опыта. Метод графической регистрации дал возможность записывать одновременно (синхронно) не один, а несколько физиологических процессов.
Довольно скоро после изобретения способа записи артериального давления были предложены методы регистрации сокращения сердца и мышц (Энгельман), введена техника воздушной передачи (капсула Марея), позволившая записывать иногда на значительном расстоянии от объекта ряд физиологических процессов в организме: дыхательные движения грудной клетки и живота, перистальтику и изменение тонуса желудка, кишечника и т. д. Был предложен метод регистрации изменения сосудистого тонуса (плетизмография по Моссо), объема различных внутренних органов -- онкометрия и т. д.
3. Исследования биоэлектрических явлений
Чрезвычайно важное направление развития физиологии было ознаменовано открытием «животного электричества». Л. Гальвани показал, что живые ткани являются источником электрических потенциалов, способных воз действовать на нервы и мышцы другого организма и вызывать сокращение мышц. С тех пор на протяжении почти целого столетия единственным индикатором потенциалов, генерируемых живыми тканями (биоэлектрических потенциалов), был нервно-мышечный препарат лягушки. Он помог открыть потенциалы, генерируемые сердцем при его деятельности (опыт Келликера и Мюллера), а также необходимость непрерывной генерации электрических потенциалов для постоянного сокращения мышц (опыт «вторичного тетануса» Маттеуччи). Стало ясно, что биоэлектрические потенциалы -- это не случайные (побочные) явления в деятельности живых тканей, а сигналы, при помощи которых в организме передаются «команды» в нервной системе и от нее мышцам и другим органам. Таким образом, живые ткани взаимодействуют, используя «электрический язык».
Понять этот «язык» удалось значительно позже, после изобретения физических приборов, улавливающих биоэлектрические потенциалы. Одним из первых таких приборов был простой телефон. Замечательный русский физиолог Н. Е. Введенский при помощи телефона открыл ряд важнейших физиологических свойств нервов и мышц. Используя телефон, удалось прослушать биоэлектрические потенциалы, т. е. исследовать их путем наблюдения. Значительным шагом вперед было изобретение методики объективной графической регистрации биоэлектрических явлений. Нидерландский физиолог Эйнтховен изобрел струнный гальванометр -- прибор, позволивший зарегистрировать на фотопленке электрические потенциалы, возникающие при деятельности сердца, -- электрокардиограмму (ЭКГ). В нашей стране пионером этого метода был крупнейший физиолог, ученик И. М. Сеченова и И. П. Павлова А. Ф. Самойлов, работавший некоторое время в лаборатории Эйнтховена в Лейдене.
Электрокардиография из физиологических лабораторий очень скоро перешла в клинику как совершенный метод исследования состояния сердца, и многие миллионы больных сегодня обязаны этому методу своей жизнью.
В последующем успехи электроники позволили создать компактные электрокардиографы и методы телеметрического контроля, дающие возможность регистрировать ЭКГ и другие физиологические процессы у космонавтов на околоземной орбите, у спортсменов во время соревнований и у больных, находящихся в отдаленных местностях, откуда информация передается по телефонным проводам в крупные специализированные учреждения для всестороннего анализа.
Объективная графическая регистрация биоэлектрических потенциалов послужила основой важнейшего раздела нашей науки -- электрофизиологии. Крупным шагом вперед было предложение английского физиолога Эдриана использовать для записи биоэлектрических явлений электронные усилители. В. Я. Данилевский и В. В. Правдич-Неминский впервые зарегистрировали биотоки головного мозга. Этот метод был позже усовершенствован немецким ученым Бергером. В настоящее время электроэнцефалография широко используется в клинике, так же как и графическая запись электрических потенциалов мышц (электромиография), нервов и других возбудимых тканей и органов. Это позволило проводить тонкую оценку функционального состояния органов и систем. Для развития физиологии указанные методы имели также большое значение: они позволили расшифровать механизмы деятельности нервной системы и других органов и тканей, механизмы регуляции физиологических процессов.
Важной вехой в развитии электрофизиологии было изобретение микроэлектродов, т. е. тончайших электродов, диаметр кончика которых равен долям микрона. Эти электроды при помощи микроманипуляторов, можно вводить непосредственно в клетку и регистрировать биоэлектрические потенциалы внутриклеточно. Микроэлектродная техника дала возможность расшифровать механизмы генерации биопотенциалов -- процессов, протекающих в мембранах клетки. Мембраны являются важнейшими образованиями, так как через них осуществляются процессы взаимодействия клеток в организме и отдельных элементов клетки между собой. Наука о функциях биологических мембран -- мембранология -- стала важным разделом физиологии.
4. Методы электрического раздражения органов и тканей
Существенной вехой в развитии физиологии было введение метода электрического раздражения органов и тканей. Живые органы и ткани способны реагировать на любые воздействия: тепловые, механические, химические и др. Электрическое раздражение по своей природе близко к «естественному языку», с помощью которого живые системы обмениваются информацией. Основоположником этого метода был немецкий физиолог Дюбуа-Реймон, предложивший свой знаменитый «санный аппарат» (индукционная катушка) для дозированного электрического раздражения живых тканей.
В настоящее время для этого используют электронные стимуляторы, позволяющие получить электрические импульсы любой фор мы, частоты и силы. Электрическая стимуляция стала важным методом исследования функций органов и тканей. Указанный метод широко применяется и в клинике. Разработаны конструкции раз личных электронных стимуляторов, которые можно вживлять в организм. Электрическая стимуляция сердца стала надежным способом восстановления нормального ритма и функций этого жизненно важного органа и возвратила к труду сотни тысяч людей. Успешно применяется электростимуляция скелетных мышц, разрабатываются методы электрической стимуляции участков головного мозга при помощи вживленных электродов. Последние при помощи специальных стереотаксических приборов вводят в строго определенные нервные центры (с точностью до долей миллиметра). Этот метод, перенесенный из физиологии в клинику, позволил излечить тысячи неврологических больных и получить большое количество важных данных о механизмах работы человеческого мозга (Н. П. Бехтерева).
Помимо регистрации электрических потенциалов, температуры, давления, механических движений и других физических процессов, а также результатов воздействия этих процессов на организм, в физиологии широко применяются химические методы.
психофизиология исследование метод эксперимент
5. Химические методы исследования в физиологии
«Язык» электрических сигналов не единственный в организме. Распространенным является также химическое взаимодействие процессов жизнедеятельности (цепи химических процессов, происходящих в живых тканях). Поэтому возникла область химии, изучающая эти процессы, -- физиологическая химия. Сегодня она превратилась в самостоятельную науку -- биологическую химию, раскрывающую молекулярные механизмы физиологических процессов. Физиологи в экспериментах широко используют методы, возникшие на стыке химии, физики и биологии, что в свою очередь породило уже новые отрасли науки, например биологическую физику, изучающую физическую сторону физиологических явлений.
Физиолог широко использует радионуклидные методы. В современных физиологических исследованиях применяются и другие методы, заимствованные из точных наук. Они дают поистине бесценные сведения при количественном анализе механизмов физиологических процессов.
6. Электрическая запись неэлектрических величин
Сегодня значительные успехи физиологии связаны с использованием радиоэлектронной техники. Применяются датчики -- преобразователи различных неэлектрических явлений и величин (движение, давление, температура, концентрация различных веществ, ионов и т. д.) в электрические потенциалы, которые затем усиливаются электронными усилителями и регистрируются осциллографами. Разработано огромное количество разных типов таких регистрирующих устройств, которые позволяют записать на осциллографе очень многие физиологические процессы и ввести полученную информацию в компьютер. В ряде приборов используют дополнительные воздействия на организм (ультразвуковые или электромагнитные волны и т.д.). В таких случаях записывают величины параметров этих воздействий, изменяющих те или иные физиологические функции. Преимуществом подобных приборов является то, что преобразователь -- датчик можно укрепить не на исследуемом органе, а на поверхности тела. Испускаемые прибором волны проникают в организм, и после отражения исследуемого органа регистрируются датчиком. На таком принципе построены, например, ультразвуковые расходомеры, определяющие скорость кровотока в сосудах; реографы и реоплетизмографы регистрируют изменение величины электрического сопротивления тканей, которое зависит от кровенаполнения различных органов и частей организма. Преимуществом таких методов является возможность исследования организма в любой момент без предварительных операций. Кроме того, такие исследования не наносят вред человеку. Большинство современных методов физиологических исследований в клинике основано на этих принципах. В России инициатором использования радиоэлектронной техники для физиологических исследований был академик В. В. Парин.
7. Метод острого эксперимента
Прогресс науки обусловлен не только развитием экспериментальной науки и методов исследования. Он в огромной мере зависит и от эволюции мышления физиологов, от развития методологических и методических подходов к изучению физиологических явлений. С начала зарождения и до 80-х годов прошлого столетия физиология оставалась наукой аналитической. Она расчленяла организм на отдельные органы и системы и изучала деятельность их изолированно. Основным методическим приемом аналитической физиологии были эксперименты на изолированных органах. При этом чтобы получить доступ к какому-либо внутреннему органу или системе, физиолог должен был заниматься вивисекцией (живосечением). Такие эксперименты называют также острыми опытами.
Подопытное животное привязывали к станку и производили сложную и болезненную операцию. Это был тяжелый труд, но иного способа проникнуть в глубь организма наука не знала. Дело не только в моральной стороне проблемы. Жестокие пытки, не выносимые страдания, которым подвергалось животное, грубо нарушали нормальный ход физиологических явлений и не позволяли понять сущность процессов, протекающих в организме в естественных условиях, в норме. Существенно не помогло и применение наркоза, а также других методов обезболивания. Фиксация животного, воздействие наркотических веществ, операция, кровопотеря -- все это совершенно меняло и нарушало нормальную жизнедеятельность организма. Образовался заколдованный круг. Чтобы исследовать тот или иной процесс или функцию органа либо системы, нужно было проникнуть в глубь организма, а сама попытка такого проникновения нарушала нормальное протекание физиологических процессов, для изучения которых и предпринимался опыт. Кроме того, исследование изолированных органов не давало представления об их истинной функции в условиях целостного неповрежденного организма.
8. Метод хронического эксперимента
Величайшей заслугой русской науки в истории физиологии стало то, что один из самых талантливых и ярких ее представителей И. П. Павлов сумел найти выход из этого тупика. И. П. Павлов болезненно переживал недостатки аналитической физиологии и острого эксперимента. Он нашел способ, позволяющий заглянуть в глубь организма, не нарушая его целостности. Это был метод хронического эксперимента, проводимого на основе «физиологической хирургии».
На наркотизированном животном в условиях стерильности предварительно производили сложную операцию, позволяющую получить доступ к тому или иному внутреннему органу, проделывали «окошечко» в полый орган, вживляли фистульную трубку или выводили наружу и подшивали к коже проток железы. Сам опыт начинали много дней спустя, когда рана заживала, животное выздоравливало и по характеру течения физиологических процессов практически ничем не отличалось от нормального, здорового. Благодаря наложенной фистуле можно было длительно изучать течение тех или иных физиологических процессов в естественных условиях поведения
Использование в физиологии методов других наук
Физиология и кибернетика
Кибернетика (от греч. kybernetike -- искусство управления) -- наука об управлении автоматизированными процессами. Процессы управления, как известно, осуществляются путем сигналов, несущих определенную информацию. В организме такими сигналами являются нервные импульсы, имеющие электрическую природу, а также различные химические вещества.
Кибернетика изучает процессы восприятия, кодирования, переработки, хранения и воспроизведения информации. В организме для этих целей существуют специальные структуры и системы (рецепторы, нервные волокна, нервные клетки и т.д.).
Технические кибернетические устройства позволили создать модели, воспроизводящие некоторые функции нервной системы. Однако работа мозга в целом такому моделированию еще не поддается, и необходимы дальнейшие исследования.
Союз кибернетики и физиологии возник всего лишь четыре десятилетия назад, но за это время математический и технический арсенал современной кибернетики обеспечил значительные успехи изучения и моделирования физиологических процессов.
Математика и компьютерная техника в физиологии
Одновременная (синхронная) регистрация физиологических процессов позволяет изучать взаимодействие различных явлений. Для этого не обходимы точные математические методы, использование которых также знаменовало новую важную ступень в развитии физиологии. Математизация исследований позволяет использовать в физиологии компьютерную технику, что не только увеличивает скорость обработки информации, но и дает возможность производить такую об работку непосредственно в момент эксперимента, позволяет менять ход и задачи самого исследования в соответствии с получаемыми результатами.
Таким образом, как бы завершился виток спирали в развитии физиологии. На заре возникновения этой науки исследование, анализ и оценка результатов производились экспериментатором одно временно в процессе наблюдения, непосредственно во время самого эксперимента. Графическая регистрация позволила разделить эти процессы во времени и обрабатывать и анализировать результаты после окончания эксперимента. Радиоэлектроника и кибернетика сделали возможным вновь соединить анализ и обработку результатов с проведением самого опыта, но на принципиально иной основе: одновременно исследуется взаимодействие множества различных физиологических процессов, и количественно анализируются результаты такого взаимодействия. Это позволило производить так называемый управляемый автоматический эксперимент, в котором компьютер помогает исследователю не просто анализировать результаты, но и менять ход опыта и постановку задач, равно как и типы воздействия на организм, в зависимости от характера реакций организма, возникающих непосредственно в ходе опыта. Физика, математика, кибернетика и другие точные науки перевооружили физиологию и представили врачу могучий арсенал современных технических средств для точной оценки функционального состояния организма и для воздействия на организм.
Математическое моделирование в физиологии
Знание физиологических закономерностей, количественных характеристик раз личных физиологических процессов, взаимоотношений между ними позволило создать их математические модели. С помощью таких моделей физиологические процессы воспроизводят на компьютерах, исследуя различные варианты реакций, т. е. возможных будущих их изменений при тех или иных воздействиях на организм (лекарственные вещества, физические факторы или экстремальные условия окружающей среды). В настоящее время союз физиологии и кибернетики оказался полезным при проведении сложных хирургических операций, в чрезвычайных условиях, требующих точной оценки, как текущего состояния важнейших физиологических процессов организма, так и предвидения возможных их изменений. Такой подход позволяет значительно повысить надежность «человеческого фактора» в трудных и ответственных звеньях современного производства.
Объективное изучение высшей нервной деятельности
На протяжении тысячелетий было принято считать, что поведение человека определяется влиянием некой нематериальной сущности («души»), познать которую физиолог не в силах. Физиология XX века имеет существенные успехи не только в области раскрытия механизмов процессов жизнедеятельности и управления этими процессами, но осуществила прорыв в самую сложную и таинственную область -- в область психических явлений. Физиологическая основа психики -- высшая нервная деятельность человека и животных, стала одним из важных объектов физиологического исследования.
И. М. Сеченов был первым из физиологов мира, который рискнул представить поведение на основе принципа рефлекса, т. е. на основе известных в физиологии механизмов нервной деятельности. В своей знаменитой книге «Рефлексы головного мозга» он показал, что сколь бы сложными ни казались нам внешние проявления психической деятельности человека, они рано или поздно сводятся лишь к од ному -- мышечному движению. «Улыбается ли ребенок при виде новой игрушки, смеется ли Гарибальди, когда его гонят за излишнюю любовь к родине, создает ли Ньютон мировые законы и пишет их на бумаге, дрожит ли девушка при мысли о первом свидании, всегда конечным итогом мысли является одно -- мышечное движение», -- писал И. М. Сеченов.
Сеченовская попытка обосновать механизмы мозговой деятельности была чисто теоретической. Необходим был следующий шаг -- экспериментальные исследования физиологических механизмов, лежащих в основе психической деятельности и поведенческих реакций. И этот шаг был сделан И. П. Павловым.
То, что именно И. П. Павлов, а не кто-нибудь другой стал наследником идей И. М. Сеченова и первым проник в основные тайны работы высших отделов мозга, не случайно. К этому привела логика проводимых им экспериментальных физиологических исследований. Изучая процессы жизнедеятельности организма в условиях естественного поведения животного, И. П. Павлов обратил внимание на важную роль психических факторов, влияющих на все физиологические процессы. От наблюдательности И. П. Павлова не ускользнул тот факт, что слюна, желудочный сок и другие пищеварительные соки начинают выделяться у животного не только в момент еды, а задолго до еды, при виде еды, звуке шагов служителя, который обычно кормит животное. И. П. Павлов обратил внимание на то, что аппетит, страстное желание еды является столь же мощным сокоотделительным агентом, как и сама еда. Аппетит, желание, настроение, переживания, чувства -- все это психические явления. Они до И. П. Павлова физиологами не изучались. И. П. Павлов же увидел, что физиолог не вправе игнорировать эти явления, так как они властно вмешиваются в течение физиологических процессов, меняя их характер. Поэтому физиолог обязан был их изучать. Но как? До И. П. Павлова эти явления рассматривались наукой, которая называется зоопсихологией.
Обратившись к этой науке, И. П. Павлов должен был отойти от твердой «почвы» физиологических фактов и войти в область гаданий относительно кажущегося психического состояния животных. Для объяснения поведения человека правомерны методы, используемые в психологии, ибо человек всегда может сообщить о своих чувствах, настроениях, переживаниях и т. д. Зоопсихологи слепо переносили на животных данные, полученные при обследовании человека, и также говорили о «чувствах», «настроениях», «переживаниях», «желаниях» и т. д. у животного, не имея возможности проверить, так это или нет на самом деле. Впервые в павловских лабораториях по поводу механизмов одних и тех же фактов возникало столько мнений, сколько наблюдателей видело эти факты. Каждый из наблюдателей трактовал факты по-своему, и не было возможности проверить правильность любой из трактовок. И. П. Павлов понял, что подобные трактовки бессмысленны и поэтому сделал решительный, поистине революционный, шаг. Не пытаясь гадать о тех или иных внутренних психических состояниях животного, он начал изучать поведение животного объективно, сопоставляя те или иные воздействия на организм с ответными реакциями организма. Этот объективный метод позволил выявить законы, лежащие в основе поведенческих реакций организма.
Метод объективного изучения поведенческих реакций создал новую науку -- физиологию высшей нервной деятельности с ее точным знанием процессов, происходящих в нервной системе при тех или иных воздействиях внешней среды. Эта наука много дала для понимания сущности механизмов психической деятельности человека.
Созданная И. П. Павловым физиология высшей нервной деятельности стала естественно-научной основой психологии. Она имеет важнейшее значение в философии, медицине, педагогике и во всех науках, которые так или иначе сталкиваются с необходимостью изучать внутренний (духовный) мир человека. Учение И. П. Павлова о высшей нервной деятельности имеет огромное практическое значение.
Заключение
Во второй половине XIX века -- начале XX столетия физиология в России становится одной из передовых в мировой науке, в чем выдающуюся роль сыграли столичные школы И. М. Сеченова (1829--1905), И. П. Павлова (1849--1936), известные школы Казани, Киева, Одессы, Томска, Екатеринбурга. Российская наука при всей ее самобытности, методологической оригинальности поддерживала теснейшие творческие связи с ведущими физиологическими школами Западной Европы, а затем и Америки.
XX век -- период интеграции и специализации наук, не обошел величайшими открытиями и физиологию. В 40--50-х годах утверждается мембранная теория биоэлектрических потенциалов (А.Л. Ходжкин, Э.Ф.Хаксли, Б. Катц). Роль этой теории в установлении ионных механизмов возбуждения нейронов в 1963 г. отмечается Нобелевской премией (Д. К. Экклс, Э. Ф. Хаксли, А. Л. Ходжкин). Делаются принципиальные открытия в области цитофизиологии и цитохимии.
Конец XIX и начало XX века -- период определяющих успехов в области физиологии нервов и мышц как возбудимых тканей (Дюбуа-Реймон, Э. Ф. Пфлюгер, П. Г. Гейденгайн, Ю. Бернштейн, Г. Л. Гельмгольц). В России особенно заметные исследования в этом разделе науки выполняются Н. Е. Введенским (1852--1922), А. И. Бабухиным (1835--1891), Б. Ф. Вериго (1860--1925), В. Я. Данилевским (1852--1939), В. Ю. Чаговцем (1873--1941). За открытия теплообразования в мышцах А. В. Хиллу (1886--1977) и О. Ф. Мейергофу (1884--1951) присуждается Нобелевская премия. Достижением XX века, отмеченным Нобелевской премией 1936 г., явилось открытие химического механизма передачи нервного импульса в синапсах О. Леви (1873--1961) и Г. X. Дейлом (1875-- 1968). Развитие этого направления в трудах У. Эйлера, Д. Аксель рода и Б. Катца было отмечено Нобелевской премией в 1970 г. А. Д. Эрлангер и Г. Гассер были отмечены в 1944 г. той же премией за успехи в изучении проведения импульсов по нервным волокнам. В решение проблемы возбуждения нервов и мышц в этот период существенный вклад вносят и советские физиологи -- А. А. Ухтомский (1875--1942), А. Ф.Самойлов (1867--1930), Д. С. Воронцов (1886--1965).
Выдающаяся роль в исследовании функций мозга принадлежит И. М. Сеченову (1829--1905), который в 1862 г. открыл явление торможения в ЦНС, что во многом определило последующие успехи исследований координации рефлекторной деятельности. Идеи, изложенные И. М. Сеченовым в книге «Рефлексы головного мозга» (1863), определили то, что к рефлекторным актам были отнесены психические явления, внесли новые представления в механизмы деятельности мозга, наметили принципиально новые подходы к его дальнейшим исследованиям. При этом ученый подчеркнул определяющую роль внешней среды в рефлекторной деятельности мозга.
На качественно новый уровень вывел теорию рефлекторной деятельности мозга И. П. Павлов (1849--1936), создав учение о высшей нервной деятельности (поведении) человека и животных, ее физиологии и патологии. И. П. Павлов основал школу отечественных физиологов, внесшую выдающийся вклад в мировую науку.
В числе учеников и последователей И. П. Павлова академики П. К. Анохин, Э. А. Астратян, К. М. Быков, Л. А. Орбели и многие другие, создавшие отечественные физиологические научные школы.
Идеи И. П. Павлова о рефлекторной деятельности мозга получили дальнейшее развитие в учении о функциональных системах П. К. Анохина (1898--1974), которые являются основой организации сложных форм поведенческой деятельности и обеспечения гомеостаза организма человека и животных. Трудно переоценить вклад в физиологию нервной системы И. С. Бериташвили (1885--1975), открывшего фундаментальные закономерности в деятельности мозга и создавшего ряд оригинальных теорий о ее организации.
Э. А. Астратян (1903--1981) -- автор ряда фундаментальных работ, в которых развивал основные положения И. П. Павлова о высшей нервной деятельности. К. М. Быков (1887--1959) основал учение о двусторонней связи коры головного мозга с внутренними органами, о кортико-висцеральной патологии. Его ученик В. Н. Черниговский (1907--1981) обогатил науку учением об интероцепции висцеральных органов, регуляции системы крови.
Л. А. Орбели (1882--1958) основал учение об адаптационно-трофических влияниях симпатической нервной системы на соматические и вегетативные функции организма, явился одним из основателей эволюционной физиологии. Л. С. Штерн (1878--1968) создала учение о гематоэнцефалическом и гистогематическом барьерах, обеспечивающих гомеостатические функции в организме человека и животных.
Велика заслуга А. А. Ухтомского (1875--1942) в изучении физиологии ЦНС. Его учение о доминанте -- «основном принципе деятельности» мозга и поныне питает идеи организации целенаправленной деятельности человека и животных.
Несомненно, что вклад отечественных физиологов в мировую науку о мозге оригинален и общепризнан, многое сделано и в изучении локализации функций в мозге (В. М. Бехтерев, М. А. Миславский, Ф. В. Овсянников и др.), в разработке методов его изучения.
Выдающуюся роль в изучении функций центральной нервной системы сыграл Ч. С. Шеррингтон (1856--1952), разработавший и сформулировавший основные принципы координационной деятельности мозга. Эти работы были удостоены в 1932 г. Нобелевской премии. Премию одновременно получил и электрофизиолог
Э. Д. Эдриан (1889--1977), также внесший существенный вклад в современные представления о деятельности мозга. Заслуга Ч. С. Шеррингтона и в том, что он воспитал плеяду физиологов, которым наука обязана многими выдающимися открытиями (Р. Гранит, Р. Магнус, У. Пенфилд, Дж. Экклс и др.).
Р. Магнусу (1873--1927) наука обязана учением об установочных рефлексах, распределяющих тонус скелетных мышц. Р. Гранит, X. К. Хартлайнен и Д. Уолд в 1967 г., а Д. Хьюбел и Т. Визел в 1981 г. были удостоены Нобелевской премии за работы по физиологии и биохимии зрительного анализатора. В этот раздел науки внесли достойный вклад также отечественные ученые П. П. Лазарев (1878--1942) и В. С. Кравков (1893--1951).
Современная физиология ретикулярной формации мозга создана экспериментальными исследованиями Г. Мэгуна и Д. Моруцци. Следует подчеркнуть, что основой для проведения этих исследований послужили результаты научных работ И. М. Сеченова и В. М. Бехтерева.
Физиология висцеральных органов в истории науки занимает весьма заметное место со времени возникновения физиологии до наших дней. XIX и XX века ознаменованы крупными открытиями по механизмам регуляции деятельности сердца и кровеносных сосудов: К.Людвиг (1816--1895), И. Ф. Цион (1842--1912), К. Бер нар (1813--1878), Ф.В.Овсянников (1827--1906), В. Эйнтховеи (1860--1927), Э. Г. Стерлинг (1866--1927) и др.
За исследования капиллярного кровообращения в 1920 г. Нобелевской премии был удостоен А. Крог (1874--1949). В советское время крупный научный вклад в физиологию сердечно-сосудистой системы внесли В. В. Парин (1903--1971), В. Н. Черниговский, А. М. Чернух и др.
Богат XX век успехами в области физиологии дыхания, особенно его регуляции (Н. А. Миславский, К. Гейманс, Д. С. Холдейн). За работы в этой области К. Гейманс (1892--1968) получил Нобелевскую премию в 1939 г. Крупные открытия были сделаны по биохимии газообмена и клеточного дыхания (А. Крог, Д. Баркрофт), а О. Г. Варбургу (1883--1970) за открытие ферментативного механизма клеточного дыхания была присуждена Нобелевская премия в 1931 г. Велик вклад в физиологию дыхательного центра М. В. Сергиевского (1898--1982).
Физиологией пищеварения в разное время занимались выдающиеся физиологи Европы и Америки (К. Людвиг, К. Бернар, Р. Геденгайн, Э. Старлинг и др.), но «пересоздал физиологию пищеварения» (так сказано в дипломе Нобелевского лауреата 1904 г.) И. П. Павлов -- первый среди физиологов мира и первый Российский ученый, удостоенный этого высокого звания. Внутриклеточному пищеварению были посвящены работы еще одного Нобелевского лауреата -- И. И. Мечникова (1845--1916). В лаборатории И. П. Павлова работали Е. С. Лондон, И. П. Разенков, Г. В. Фольборт, Б. П. Бабкин и др., которые продолжили славные традиции первооткрывателей в области физиологии пищеварения. Выдающуюся роль в этой области науки сыграл А. М. Уголев (1926--1992), которому принадлежат честь открытия мембранного кишечного пищеварения и определение его места в пищеварительном конвейере, современные концепции эндокринной деятельности желудочно-кишечного тракта, эволюции секреторных процессов, теория адекватного питания и другие оригинальные теории и гипотезы в физиологии.
Отечественным физиологам принадлежит приоритет в создании искусственного сердца (А. А. Брюхоненко), записи ЭЭГ (В. В. Правдич-Неминский), создании таких важных и новых направлений в науке, как космическая физиология, физиология труда, физиология спорта, исследовании физиологических механизмов адаптации, регуляции механизмов реализации многих физиологических функций.
Эти и многие другие исследования отечественных ученых имеют первостепенное значение для медицины, физиологии и психофизиологии всего мира.
Литература
1. Физиология человека/ под редакцией В.М.Покровского, Г.Ф.Коротько. Учебная литература для студентов медицинских вузов. - М., 2001.
2. Методы исследований в психофизиологии. / Под ред. А.С. Батуева - СПб, 1994 г.
3. Хессет. Введение в психофизиологию. - М., 1981.
4. Физиология человека/ под ред. Покровского В.Н. - М., 1998 г.
Размещено на Allbest.ru
Подобные документы
Наблюдаемые действия и поведение человека. Метод и основные характеристики эксперимента в психологии. Оценка качества психологического эксперимента. Специфика организации экспериментального общения. Организация и проведение воспроизводящего исследования.
реферат [52,0 K], добавлен 22.11.2012Наблюдение человеком за собственными психическими процессами. Программы и методы исследования личности: психологические методы, социологические. Общественная мысль как социологический метод исследования. Оценка актуальных общественник отношений.
реферат [25,7 K], добавлен 24.12.2007Исследования памяти: микроэлектродный метод, электроэнцефалография (ЭЭГ), магнитоэнцефалография. Визуальные методы исследования памяти: позитронно-эмиссионная томография, ядерная магнитная резонансная интроскопия. Структуры мозга, отвечающие за память.
реферат [15,0 K], добавлен 05.10.2009Разнообразие методов психологии, объективность изучения психических явлений. Использование метода наблюдения, изучение психической деятельности человека в обычных условиях жизни. Эксперимент и другие специальные методы психологического исследования.
контрольная работа [15,6 K], добавлен 30.10.2009Проблемы изучения личности. Метод исследования личности. Тест "Мотивация педагогической деятельности". Метод исследования личности Т.Дембо-С.Я.Рубинштейн. Метод исследования личности. Методика Ф.Хоппе. Метод исследования личности. Методика ТАТ.
реферат [22,0 K], добавлен 24.09.2008Социально-психологическое наблюдение как метод сбора научной информации. Направленное, систематическое прослеживание и фиксирование значимых социальных явлений, процессов и событий. Виды и этапы исследования методом наблюдения; схема наблюдения Бейлза.
доклад [23,4 K], добавлен 18.01.2010Понятие и классификация методов психологического исследования. Организационные, эмпирические, интерпретационные методы исследования. Методы обработки полученных данных. Процедура перевода качественных данных в количественные, экспертная оценка, рейтинг.
реферат [29,8 K], добавлен 20.11.2014Методы исследования в современной психологии. Метод самонаблюдения. Объективный метод в психологическом исследовании - единство сознания и деятельности. Принцип генетического (исторического) изучения психических фактов. Лонгитюдный метод исследования.
реферат [34,0 K], добавлен 23.12.2008- Применение методов психофизиологических исследований в психофизиологии профессиональной деятельности
Предмет, сущность, задачи, основные понятия психофизиологии профессиональной деятельности. Методы психофизиологического исследования. Сравнительный анализ методов психофизиологических исследований в психофизиологии профессиональной деятельности.
курсовая работа [35,3 K], добавлен 20.01.2016 Понятие психологического эксперимента и его роль при проведении психологических исследований. Анализ сущности эксперимента и его видов. Подготовка, инструктирование и мотивирование испытуемых, экспериментирование как основные этапы исследования.
реферат [27,4 K], добавлен 12.05.2014