Применение нейронных сетей для определения степени загрязнения атмосферного воздуха
Характеристика проблемы загрязнения атмосферного воздуха. Анализ данных, снятых с датчика концентрации веществ в атмосферном воздухе. Разработка нейронной сети для определения степени загрязнения воздуха. Использование языка программирования Python.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | русский |
Дата добавления | 19.02.2019 |
Размер файла | 900,3 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Прогнозирование валютных курсов с использованием искусственной нейронной сети. Общая характеристика среды программирования Delphi 7. Существующие методы прогнозирования. Характеристика нечетких нейронных сетей. Инструкция по работе с программой.
курсовая работа [2,2 M], добавлен 12.11.2010Математическая модель искусственной нейронной сети. Структура многослойного персептрона. Обучение без учителя, методом соревнования. Правило коррекции по ошибке. Метод Хэбба. Генетический алгоритм. Применение нейронных сетей для синтеза регуляторов.
дипломная работа [1,5 M], добавлен 17.09.2013Математическая модель нейронной сети. Однослойный и многослойный персептрон, рекуррентные сети. Обучение нейронных сетей с учителем и без него. Алгоритм обратного распространения ошибки. Подготовка данных, схема системы сети с динамическим объектом.
дипломная работа [2,6 M], добавлен 23.09.2013Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.
лабораторная работа [1,1 M], добавлен 05.10.2010Прогнозирование на фондовом рынке с помощью нейронных сетей. Описание типа нейронной сети. Определение входных данных и их обработка. Архитектура нейронной сети. Точность результата. Моделирование торговли. Нейронная сеть прямого распространения сигнала.
дипломная работа [2,7 M], добавлен 18.02.2017Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.
дипломная работа [814,6 K], добавлен 29.09.2014Математические модели, построенные по принципу организации и функционирования биологических нейронных сетей, их программные или аппаратные реализации. Разработка нейронной сети типа "многослойный персептрон" для прогнозирования выбора токарного станка.
курсовая работа [549,7 K], добавлен 03.03.2015Технологии решения задач с использованием нейронных сетей в пакетах расширения Neural Networks Toolbox и Simulink. Создание этого вида сети, анализ сценария формирования и степени достоверности результатов вычислений на тестовом массиве входных векторов.
лабораторная работа [352,2 K], добавлен 20.05.2013Разработка структуры базы данных для хранения дипломных проектов в среде объектно-ориентированного программирования Python. Создание внешнего вида окон ввода-вывода информации, технологии переходов. Листинг программы с пояснениями; направления улучшения.
курсовая работа [3,1 M], добавлен 27.02.2015Отличительные особенности языка программирования Python: низкий порог вхождения, минималистичный язык, краткий код, поддержка математических вычислений, большое количество развитых web-фреймворков. Традиционная модель выполнения программ на языке Python.
реферат [51,9 K], добавлен 18.01.2015