Нечеткая кластеризация потоков данных с помощью ЕМ-алгоритма на основе самообучения по Т. Кохонену
Описание мягкого вероятностного нечеткого алгоритма кластеризации многомерных данных, последовательно поступающих на обработку в режиме реального времени. Использование алгоритма для решения задач Dynamic Stream Mining в условиях перекрывающихся классов.
| Рубрика | Программирование, компьютеры и кибернетика |
| Вид | статья |
| Язык | русский |
| Дата добавления | 19.06.2018 |
| Размер файла | 45,5 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Основы для проведения кластеризации. Использование Data Mining как способа "обнаружения знаний в базах данных". Выбор алгоритмов кластеризации. Получение данных из хранилища базы данных дистанционного практикума. Кластеризация студентов и задач.
курсовая работа [728,4 K], добавлен 10.07.2017Характеристика методов нечеткого моделирования и изучение системы кластеризации в пакетах прикладных программ. Разработка и реализация алгоритма для оптимизации базы правил нечеткого классификатора с помощью генетического алгоритма аппроксимации функции.
дипломная работа [1,9 M], добавлен 21.06.2014Исследование системы распределения ключей на основе линейных преобразований. Описание компонентов сети конфиденциальной связи. Характеристика отечественного алгоритма шифрования данных. Обзор результатов расчетов криптостойкости алгоритма шифрования.
контрольная работа [56,5 K], добавлен 26.09.2012Описание функциональных возможностей технологии Data Mining как процессов обнаружения неизвестных данных. Изучение систем вывода ассоциативных правил и механизмов нейросетевых алгоритмов. Описание алгоритмов кластеризации и сфер применения Data Mining.
контрольная работа [208,4 K], добавлен 14.06.2013Анализ проблем, возникающих при применении методов и алгоритмов кластеризации. Основные алгоритмы разбиения на кластеры. Программа RapidMiner как среда для машинного обучения и анализа данных. Оценка качества кластеризации с помощью методов Data Mining.
курсовая работа [3,9 M], добавлен 22.10.2012Разработка приложения для шифрования данных с помощью алгоритма DES5: процесс шифрования, расшифрования, получение ключей. Спецификация программы, процедуры и функции; описание интерфейса пользователя. Реализация задачи в среде программирования DELPHI.
курсовая работа [812,6 K], добавлен 27.03.2012Разработка программы шифрования данных с использованием алгоритма DES. Структура алгоритма, режимы его работы. Электронный шифровальный блокнот. Цепочка цифровых блокнотов. Цифровая и внешняя обратная связь. Структура окна: функции основных кнопок.
лабораторная работа [830,3 K], добавлен 28.04.2014Описание алгоритма решения задачи графическим способом. Вывод элементов массива. Описание блоков укрупненной схемы алгоритма на языке Pascal. Листинг программы, а также ее тестирование. Результат выполнения c помощью ввода различных входных данных.
контрольная работа [150,4 K], добавлен 03.05.2014Разработка на языке ассемблера алгоритма контроля, на циклический CRC-код, массива данных хранящегося в некоторой области памяти. Сохранение кода для последующей периодической проверки массива данных. Сообщение об искажении данных. Описание алгоритма.
курсовая работа [453,0 K], добавлен 27.02.2009Описание принципа работы генетического алгоритма, проверка его работы на функции согласно варианту на основе готовой программы. Основные параметры генетического алгоритма, его структура и содержание. Способы реализации алгоритма и его компонентов.
лабораторная работа [20,2 K], добавлен 03.12.2014
