Метод контроля эволюции для эволюционных стратегий на основе нейросетевых метамоделей
Общая схема эволюционной стратегии (ЭС). Способы построения метамоделей, их интеграция в эволюционные алгоритмы. Изучение трех стандартных тестовых функций для выявления преимуществ алгоритма ЭС на основе нейросетевых метамоделей в сравнении с другими ЭС.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | русский |
Дата добавления | 18.01.2018 |
Размер файла | 455,4 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Обзор существующих подходов в генерации музыкальных произведений. Особенности создания стилизованных аудио произведений на основе современных нейросетевых алгоритмов. Выбор средств и библиотек разработки. Практические результаты работы алгоритма.
дипломная работа [4,0 M], добавлен 13.10.2017Трудности использования эволюционных алгоритмов. Построение вычислительных систем, основанных на принципах естественного отбора. Недостатки генетических алгоритмов. Примеры эволюционных алгоритмов. Направления и разделы эволюционного моделирования.
реферат [187,4 K], добавлен 21.01.2014Примеры построения тестов и технологии исследования алгоритмов на их основе. Построение тестов на основе метода покрытия решений и проведение исследования соответствующего исходного алгоритма и алгоритма с ошибками в операторах проверки условий.
контрольная работа [224,8 K], добавлен 24.05.2016История появления эволюционных алгоритмов. Нейрокомпьютерные исследования в России. Реализация генетических алгоритмов. Расчет эффективности процедур поиска конкурирующей процедуры. Schema и теорема шим. Примеры использования нейросетевых технологий.
курсовая работа [43,0 K], добавлен 20.10.2008Описание принципа работы генетического алгоритма, проверка его работы на функции согласно варианту на основе готовой программы. Основные параметры генетического алгоритма, его структура и содержание. Способы реализации алгоритма и его компонентов.
лабораторная работа [20,2 K], добавлен 03.12.2014Способы построения остовного дерева (алгоритма поиска в глубину и поиска в ширину). Вид неориентированного графа. Понятие и алгоритмы нахождения минимальных остовных деревьев. Последовательность построения дерева графов по алгоритмам Крускала и Прима.
презентация [22,8 K], добавлен 16.09.2013Первые работы по симуляции эволюции. Основные понятия генетических алгоритмов. Постановка задачи и функция приспособленности. Инициализация, формирование исходной популяции. Выбор исходной популяции для генетического алгоритма, решение задач оптимизации.
курсовая работа [714,1 K], добавлен 31.03.2015Применение нейрокомпьютеров на российском финансовом рынке. Прогнозирование временных рядов на основе нейросетевых методов обработки. Определение курсов облигаций и акций предприятий. Применение нейронных сетей к задачам анализа биржевой деятельности.
курсовая работа [527,2 K], добавлен 28.05.2009Теоретические основы сверточных нейронных сетей. Исследование зависимости качества работы сети от изменения различных характеристик. Сравнение результатов работы сетей типа многослойный персептрон в определении пола и возраста человека по фотографии лица.
курсовая работа [2,5 M], добавлен 18.07.2014Применение тестовых заданий на уроках информатики. Основные виды тестовых заданий. Подбор тестовых заданий по темам курса информатики. Программные продукты для разработки и создания тестовых заданий. Общие правила оформления компьютерных тестовых заданий.
курсовая работа [2,2 M], добавлен 28.09.2011