Разработка программы, позволяющей строить 3D-модели карт местности по двумерным картам

Представление рельефа на топографических картах. Системы распознавания образов. Описание алгоритмов и блок-схем работы компьютерной программы и функций, используемых в ней. Обработка изображения в MatLab. Распознавание цифр на топографической карте.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 29.09.2017
Размер файла 248,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Методы распознавания образов (классификаторы): байесовский, линейный, метод потенциальных функций. Разработка программы распознавания человека по его фотографиям. Примеры работы классификаторов, экспериментальные результаты о точности работы методов.

    курсовая работа [2,7 M], добавлен 15.08.2011

  • Создание программного средства, осуществляющего распознавание зрительных образов на базе искусственных нейронных сетей. Методы, использующиеся для распознавания образов. Пандемониум Селфриджа. Персептрон Розенблатта. Правило формирования цепного кода.

    дипломная работа [554,8 K], добавлен 06.04.2014

  • Обзор математических методов распознавания. Общая архитектура программы преобразования автомобильного номерного знака. Детальное описание алгоритмов: бинаризация изображения, удаление обрамления, сегментация символов и распознавание шаблонным методом.

    курсовая работа [4,8 M], добавлен 22.06.2011

  • Разработка программного обеспечения по моделированию рельефа местности на основе топографических карт и прочих объектов на ней. Цифровые модели рельефа. Бикубическая интерполяция высотных данных. Технические требования к программному изделию.

    отчет по практике [246,4 K], добавлен 06.04.2013

  • Изучение условий поставленной задачи и используемых данных для разработки программы хранения информации о рейсах поезда. Описание разработанных функций, листинга, блок-схем алгоритмов и дерева функции. Рассмотрение сценария диалога данной программы.

    курсовая работа [532,7 K], добавлен 20.07.2014

  • Выбор типа и структуры нейронной сети. Подбор метода распознавания, структурная схема сети Хопфилда. Обучение системы распознавания образов. Особенности работы с программой, ее достоинства и недостатки. Описание интерфейса пользователя и экранных форм.

    курсовая работа [3,0 M], добавлен 14.11.2013

  • Обзор задач, возникающих при разработке систем распознавания образов. Обучаемые классификаторы образов. Алгоритм персептрона и его модификации. Создание программы, предназначенной для классификации образов методом наименьшей среднеквадратической ошибки.

    курсовая работа [645,2 K], добавлен 05.04.2015

  • Понятие и особенности построения алгоритмов распознавания образов. Различные подходы к типологии методов распознавания. Изучение основных способов представления знаний. Характеристика интенсиональных и экстенсиональных методов, оценка их качества.

    презентация [31,6 K], добавлен 06.01.2014

  • Принципы и система распознавание образов. Программное средство и пользовательский интерфейс. Теория нейронных сетей. Тривиальный алгоритм распознавания. Нейронные сети высокого порядка. Подготовка и нормализация данных. Самоорганизующиеся сети Кохонена.

    курсовая работа [2,6 M], добавлен 29.04.2009

  • Описание работы элементов программы в виде блок-схем. Анализ структурной схемы модели домофона. Блок-схема работы открытия двери ключом. Моделирование в Proteus: принцип динамического опроса и индикации, внешний вид жидкокристаллического дисплея.

    курсовая работа [1,4 M], добавлен 12.04.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.