Підготовка статистичної сукупності історично сформованих геометричних орнаментальних систем для аналізу нейронними мережами
Вирішення задач при невідомих закономірностях - одна з переваг використання нейронних мереж для аналізу класифікацій історично сформованих орнаментальних систем. Характеристика найбільш потужних програмних пакетів в області нейромережевих технологій.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | украинский |
Дата добавления | 28.10.2016 |
Размер файла | 388,6 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Застосування нейронних мереж при вирішенні різних технічних проблем. Архітектура штучних нейронних мереж. Дослідження штучного інтелекту. Гіпотеза символьних систем. Представлення за допомогою символів. Синтаксичний та семантичний аналіз розуміння мови.
курсовая работа [985,8 K], добавлен 14.01.2010Моделювання в області системотехніки та системного аналізу. Імітація випадкових величин, використання систем масового обслуговування, дискретних і дискретно-безперервних марковських процесів, імовірнісних автоматів для моделювання складних систем.
методичка [753,5 K], добавлен 24.04.2011Основні положення системного аналізу, його використання. Характеристика та основні ознаки складних систем. Використання теорії графів для структурного аналізу. Графова потокова модель технологічного комплексу. Виділення внутрішніх комплексів в ТК.
курсовая работа [88,3 K], добавлен 01.06.2010Навчання штучних нейронних мереж, особливості їх використання для вирішення практичних завдань. Рецепторна структура сприйняття інформації. Перцептрон як модель розпізнавання. Задача моделювання штучної нейронної мережі з розпаралелюванням процесів.
дипломная работа [2,8 M], добавлен 24.07.2013Опис підготовки та основних особливостей розгортання операційних систем Windows XP. Типи файлів, застосовувані в установці. Установка еталонної копії. Інтеграція пакетів виправлень і обновлень. Порівняння технологій розгортання в Windows XP та Windows 7.
контрольная работа [1,2 M], добавлен 22.04.2011Критерії процесу та вибір альтернативного рішення. Методи організації інформаційних систем. Інформаційні технології. Історія розвитку персональних компьютерів, компьютерних мереж та їх зв’язок з розвитком інформаційних систем управління економікою.
контрольная работа [36,5 K], добавлен 27.10.2008Часовий ряд як сукупність значень будь-якого показника за декілька послідовних моментів або періодів часу. Знайомство з методами для прогнозування часового ряду за допомогою штучних нейронних мереж. Розгляд головних задач дослідження часового ряду.
контрольная работа [1,1 M], добавлен 14.09.2014Комплексна обробка просторово-розподілених ресурсів мережі Інтернет. Системи інформаційного моніторингу в мережі. Обґрунтування технологій, розробка системи інтеграції Інтернет-контенту для конкурентного середовища ринку праці. Оцінювання систем аналізу.
дипломная работа [763,8 K], добавлен 14.07.2013Характеристика інструментів MatLab - пакету прикладних програм для числового аналізу. Основні функції та можливості програмного комплексу. Скриптова мова програмування. Побудова моделі штучної нейронної мережі за допомогою команди NNTool та її тестування.
лабораторная работа [215,8 K], добавлен 11.06.2015Модель взаємодії відкритих систем ISO/OSI. Структура систем телеобробки. Проблема ефективного використання апаратних ресурсів. Визначення розподіленних систем. Технології LAN, WAN, MAN. Технологія і класифікація локальних мереж, міжмережевий обмін.
реферат [489,1 K], добавлен 13.06.2010