Решение дифференциальных уравнений второго порядка в частных производных с использованием MATLAB

Рассмотрение метода конечных элементов. Определение геометрии и задание граничных условий. Выбор основных коэффициентов, определяющих задачу. Дискретизация конечных элементов. Задание начальных условий и решение PDE. Последующая обработка решения.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 23.01.2015
Размер файла 2,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Составление программы и численное решение краевой задачи нестационарной теплопроводности методом конечных разностей. Определение начальных и граничных условий, физические условия однозначности. Реализация программы на языке программирования Pascal.

    контрольная работа [1,3 M], добавлен 08.07.2013

  • Решение дифференциальных уравнений с использованием классических алгоритмов численных методов Эйлера и Рунге-Кутта 4-го порядка. Команды, используемые при решении обыкновенных дифференциальных уравнений в системе вычислений. Результат работы программы.

    курсовая работа [226,6 K], добавлен 05.04.2013

  • Решение дифференциальных уравнений с частными производными. Метод конечных элементов, история развития, преимущества и недостатки. История разработки программной системы. Задачи, решаемые с помощью программного комплекса, области применения ANSYS.

    презентация [1,7 M], добавлен 07.03.2013

  • Решение системы обыкновенных дифференциальных уравнений в программе Matlab. Применение метода Рунге–Кутты. Априорный выбор шага интегрирования. Построение трехмерного графика движения точки в декартовой системе координат и создание видеофайла формата AVI.

    контрольная работа [602,8 K], добавлен 04.05.2015

  • Обзор методов решения в Excel. Рекурентные формулы метода Эйлера. Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка. Метод Эйлера с шагом h/2. Решение дифференциальных уравнений с помощью Mathcad. Модифицированный метод Эйлера.

    курсовая работа [580,1 K], добавлен 18.01.2011

  • Упругие волны, волновое уравнение, дифракция волн. Метод коллокаций, конечных и граничных элементов. Методы возбуждения ультразвуковых волн в объекте. Численный метод решения дифференциальных уравнений с частными производными. Уменьшение зоны смещения.

    дипломная работа [1,4 M], добавлен 14.10.2013

  • Суть метода Рунге-Кутта и его свойства. Решение дифференциальных уравнений первого порядка. Вычислительный блок Given/Odesolve. Встроенные функции rkfixed, Rkadapt, Bulstoer. Решения линейных алгебраических уравнений в среде MathCad и Microsoft Excel.

    курсовая работа [1,1 M], добавлен 02.06.2014

  • Прикладной математический пакет Maple. Набор инструментов для работы с дифференциальными уравнениями в частных производных. Метод разделения переменных. Метод функций Грина. Построение формального решения на входном Maple-языке. Основные типы операций.

    курсовая работа [193,2 K], добавлен 03.08.2012

  • Команды, используемые при решении обыкновенных дифференциальных уравнений в системе вычислений Maple. Произвольные константы решения дифференциального уравнения второго порядка, представленном рядом Тейлора. Значения опции method при численном решении.

    лабораторная работа [47,2 K], добавлен 15.07.2009

  • Решение системы дифференциальных уравнений, заданной в нормальной форме Коши. Определение аналитических зависимостей изменения переменных состояния системы с использованием преобразования Лапласа. Численный метод решения системы c помощью Mathcad.

    практическая работа [657,1 K], добавлен 05.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.