Проектирование нечеткого классификатора, основанного на логическом выводе

Основные понятия и принципы нечеткого моделирования. Постановка задачи классификации на основе нечеткого логического вывода. Алгоритм ее решения. Формирование базы правил для классификатора. Использование генетических алгоритмов для ее оптимизации.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 10.04.2014
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Характеристика методов нечеткого моделирования и изучение системы кластеризации в пакетах прикладных программ. Разработка и реализация алгоритма для оптимизации базы правил нечеткого классификатора с помощью генетического алгоритма аппроксимации функции.

    дипломная работа [1,9 M], добавлен 21.06.2014

  • Основные этапы систем нечеткого вывода. Правила нечетких продукций, используемые в них. Нечеткие лингвистические высказывания. Определение алгоритмов Цукамото, Ларсена, Сугено. Реализации нечеткого вывода Мамдани на примере работы уличного светофора.

    курсовая работа [479,6 K], добавлен 14.07.2012

  • Начальное представление систем нечеткого вывода: логический вывод, база знаний. Алгоритм Мамдани в системах нечеткого вывода: принцип работы, формирование базы правил и входных переменных, агрегирование подусловий, активизация подзаключений и заключений.

    курсовая работа [757,3 K], добавлен 24.06.2011

  • Методы, системы, типы и способы проводимых измерений в автоматизированных системах медицинского обеспечения безопасности на транспорте. Проектирования нечеткого алгоритма предрейсовых медицинских осмотров на основе адаптивной сети нейро-нечеткого вывода.

    дипломная работа [6,5 M], добавлен 06.05.2011

  • Понятие и суть нечеткой логики и генетических алгоритмов. Характеристика программных пакетов для работы с системами искусственного интеллекта в среде Matlab R2009b. Реализация аппроксимации функции с применением аппарата нечеткого логического вывода.

    курсовая работа [2,3 M], добавлен 23.06.2012

  • Исследование проблемы сравнения звуковых файлов и определение степени их схожести. Сравнение файлов с использованием метода нечеткого поиска, основанного на метрике (расстоянии) Левенштейна. Сравнение MIDI-файлов и реализация алгоритмов считывания.

    курсовая работа [2,0 M], добавлен 14.07.2012

  • Понятие и свойства лингвистической переменной, ее разновидности. Основы теории приближенных рассуждений. Нечеткие системы логического вывода с одной и несколькими входными переменными. Принципы нечеткого моделирования, вычисление уровней истинности.

    презентация [152,7 K], добавлен 29.10.2013

  • Понятие нечеткого множества и функции принадлежности. Методы дефаззификации (преобразования нечеткого множества в четкое число) для многоэкстремальных функций принадлежности. Нечеткий логический вывод. Примеры выпуклого и невыпуклого нечеткого множества.

    презентация [111,7 K], добавлен 16.10.2013

  • Решение задачи аппроксимации поверхности при помощи системы нечёткого вывода. Определение входных и выходных переменных, их термы; алгоритм Сугено. Подбор функций принадлежности, построение базы правил, необходимых для связи входных и выходных переменных.

    курсовая работа [1,8 M], добавлен 31.05.2014

  • Описание генетических алгоритмов. Применение генетического алгоритма для решения задачи коммивояжера. Постановка задачи безусловной оптимизации. Изучение распространения генетических алгоритмов на модель с несколькими взаимодействующими популяциями.

    дипломная работа [979,1 K], добавлен 30.05.2015

  • Различные методы решения задачи классификации. Нейросетевые парадигмы, методы обучения нейронных сетей, возникающие при этом проблемы и пути их решения. Описание программной реализации классификатора, его функциональные возможности и результаты обучения.

    дипломная работа [1,0 M], добавлен 28.12.2015

  • Интеллектуальная система как техническая или программная система, решающая задачи, которые считаются творческими и принадлежат конкретной предметной области. Анализ системы нечеткого логического вывода. Знакомство со средой программирования FuzzyTECH.

    дипломная работа [2,6 M], добавлен 30.09.2016

  • Исследование методов автоматического проектирования нечетких систем управления (НСУ). Методы автоматической настройки семантики лингвистических переменных. Искусственные нейронные сети, генетические алгоритмы. Коэволюционный алгоритм для формирования НСУ.

    дипломная работа [2,3 M], добавлен 02.06.2011

  • Первые работы по симуляции эволюции. Основные понятия генетических алгоритмов. Постановка задачи и функция приспособленности. Инициализация, формирование исходной популяции. Выбор исходной популяции для генетического алгоритма, решение задач оптимизации.

    курсовая работа [714,1 K], добавлен 31.03.2015

  • Решение задач прогнозирования цен на акции "Мазут" на 5 дней, построение прогноза для переменной "LOW". Работа в модуле "Neural networks", назначение вкладок и их характеристика. Построение системы "Набор программистов" нечеткого логического вывода.

    курсовая работа [3,2 M], добавлен 26.12.2016

  • Основные генетические операторы. Схема функционирования генетического алгоритма. Задачи, решаемые с помощью генетических алгоритмов. Математическая постановка задачи оптимизации. Решение Диофантова уравнения. Программная реализация. Создание пособия.

    курсовая работа [391,4 K], добавлен 20.02.2008

  • Обзор существующих алгоритмов для обнаружения лиц. Выравнивание лица с помощью разнообразных фильтров. Использование каскадного классификатора Хаара для поиска лиц на изображении. Распознавание лиц людей с использованием локальных бинарных шаблонов.

    дипломная работа [332,4 K], добавлен 30.09.2016

  • Обзор методов и подходов решения поставленной задачи аппроксимации логического вывода экспертной системы. Разработка и описание метода сетевого оператора для решения данной задачи. Разработка алгоритма решения. Проведение вычислительного эксперимента.

    дипломная работа [1,5 M], добавлен 23.02.2015

  • Основные понятия агентов, термины и определения, принципы классификации. Линейные модели многоагентных систем. Постановка задачи линейного программирования, свойства ее решений. Графический и симплексный способы решения ЗЛП. Использование Microsoft Excel.

    курсовая работа [662,4 K], добавлен 03.11.2014

  • Комплексное исследование истории развития, основных понятий, области применения и особенностей генетических алгоритмов. Анализ преимуществ генетических алгоритмов. Построение генетического алгоритма, позволяющего находить максимум целочисленной функции.

    курсовая работа [27,9 K], добавлен 23.07.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.