Генетические алгоритмы

Понятие генетических алгоритмов как аналитических технологий, созданных и выверенных самой природой за миллионы лет ее существования. Особенности разработки системы, генерирующей решение с помощью генетических алгоритмов, характеристика их источника.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 21.10.2013
Размер файла 369,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Комплексное исследование истории развития, основных понятий, области применения и особенностей генетических алгоритмов. Анализ преимуществ генетических алгоритмов. Построение генетического алгоритма, позволяющего находить максимум целочисленной функции.

    курсовая работа [27,9 K], добавлен 23.07.2011

  • Основные генетические операторы. Схема функционирования генетического алгоритма. Задачи, решаемые с помощью генетических алгоритмов. Математическая постановка задачи оптимизации. Решение Диофантова уравнения. Программная реализация. Создание пособия.

    курсовая работа [391,4 K], добавлен 20.02.2008

  • История появления эволюционных алгоритмов. Нейрокомпьютерные исследования в России. Реализация генетических алгоритмов. Расчет эффективности процедур поиска конкурирующей процедуры. Schema и теорема шим. Примеры использования нейросетевых технологий.

    курсовая работа [43,0 K], добавлен 20.10.2008

  • Трудности использования эволюционных алгоритмов. Построение вычислительных систем, основанных на принципах естественного отбора. Недостатки генетических алгоритмов. Примеры эволюционных алгоритмов. Направления и разделы эволюционного моделирования.

    реферат [187,4 K], добавлен 21.01.2014

  • Описание генетических алгоритмов. Применение генетического алгоритма для решения задачи коммивояжера. Постановка задачи безусловной оптимизации. Изучение распространения генетических алгоритмов на модель с несколькими взаимодействующими популяциями.

    дипломная работа [979,1 K], добавлен 30.05.2015

  • Основные особенности эволюционных алгоритмов. Описание алгоритмов селекции, мутации, скрещивания, применяемых для реализации генетических алгоритмов. Вычисление функции приспособленности. Программная реализация. Тестирование и руководство пользователя.

    курсовая работа [1,3 M], добавлен 11.03.2014

  • Сущность и экономическое обоснование, методы и подходы к прогнозированию валютного курса. Описание технологии интеллектуальных вычислений. Применение генетических алгоритмов для настройки архитектуры нейронных сетей. Основные способы улучшения модели.

    курсовая работа [1,3 M], добавлен 26.03.2016

  • Первые работы по симуляции эволюции. Основные понятия генетических алгоритмов. Постановка задачи и функция приспособленности. Инициализация, формирование исходной популяции. Выбор исходной популяции для генетического алгоритма, решение задач оптимизации.

    курсовая работа [714,1 K], добавлен 31.03.2015

  • Понятие и суть нечеткой логики и генетических алгоритмов. Характеристика программных пакетов для работы с системами искусственного интеллекта в среде Matlab R2009b. Реализация аппроксимации функции с применением аппарата нечеткого логического вывода.

    курсовая работа [2,3 M], добавлен 23.06.2012

  • Характеристика методов нечеткого моделирования и изучение системы кластеризации в пакетах прикладных программ. Разработка и реализация алгоритма для оптимизации базы правил нечеткого классификатора с помощью генетического алгоритма аппроксимации функции.

    дипломная работа [1,9 M], добавлен 21.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.