Методы штрафных и барьерных функций

Оптимальное решение методом штрафных функций нелинейной задачи условной оптимизации. Алгоритм метода штрафных функций. Листинг программы. Зависимость шага в методе Флетчера и Ривса от исходного интервала неопределенности в методе золотого сечения.

Рубрика Программирование, компьютеры и кибернетика
Вид лабораторная работа
Язык русский
Дата добавления 23.07.2012
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Описание параметрических и непараметрических методов штрафных функций в области нелинейного программирования. Решение задачи с использованием множителей Лагранжа. Непрерывность, гладкость, выпуклость, простота вычисления значения функции и производных.

    курсовая работа [114,8 K], добавлен 25.11.2011

  • Описание подхода, позволяющего для методов оптимизации, основанных на использовании точных штрафных функций, преодолеть проблему сходимости к стационарным точкам, не принадлежащим допустимой области исходной задачи. Теория субаналитических функций.

    курсовая работа [365,6 K], добавлен 28.09.2015

  • Создание программы в среде программирования MatLab для решения задачи одномерной оптимизации (нахождение минимума и максимума заданных функций) методом золотого сечения, построение блок-схемы алгоритма и графическое изображение исследованных функций.

    реферат [112,0 K], добавлен 14.06.2010

  • Пример задачи нелинейной условной оптимизации. Основные группы методов: штрафных функций, прямого поиска, линеаризации. Последовательность задач безусловной оптимизации. Квадратичный и логарифмический штраф. Корректировка для обеспечения допустимости.

    презентация [405,0 K], добавлен 30.10.2013

  • Характеристика параметрических методов решения задач линейного программирования: методы внутренней и внешней точки, комбинированные методы. Алгоритм метода барьерных поверхностей и штрафных функций, применяемых для решения задач большой размерности.

    контрольная работа [59,8 K], добавлен 30.10.2014

  • Решения алгебраических уравнений методом выделения корней. Аппроксимация функций методом наименьших квадратов; дихотомия, бисекция. Одномерная оптимизация многоэкстремальных функций; метод золотого сечения. Многомерная оптимизация градиентным методом.

    курсовая работа [956,7 K], добавлен 04.03.2013

  • Решение задачи на тему максимизации функций многих переменных. Описание метода дихотомии, его применение для решения нелинейных уравнений. Решение данной задачи с использованием метода покоординатного спуска. Составление алгоритмов, листинг программы.

    курсовая работа [138,5 K], добавлен 01.10.2009

  • Методы ветвей и границ первого и второго порядка. Оптимальный и пассивный поиск. Недостатки метода Ньютона. Метод золотого сечения. Примеры унимодальных функций. Динамическое и линейное программирование. Метод Жордана-Гаусса. Решение задачи коммивояжера.

    курсовая работа [1,1 M], добавлен 20.07.2012

  • Решение систем алгебраических линейных уравнений методом Гаусса. Вычисление обратной матрицы и определителя. Декомпозиция задачи. Схема взаимодействия интерфейсных форм. Описание процедур и функций. Тестирование разработанного программного продукта.

    курсовая работа [1,1 M], добавлен 05.06.2012

  • Исследование типовых примеров задач оптимизации. Реализация программы в среде MatLab для их решения. Изучение функций нелинейной оптимизации. Определение оптимума целевой функции одной или нескольких переменных. Поиск оптимальных настроек регулятора.

    лабораторная работа [188,8 K], добавлен 07.12.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.