Множественная регрессия
Построение регрессии в MS Exel и ее анализ с помощью встроенной статистической функции ЛИНЕЙН или инструмента анализа данных Регрессия. Их использование для расчета остатков и графиков подбора линии регрессии, остатков и нормальной вероятности.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 09.02.2012 |
Размер файла | 14,8 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Создание макроса на языке Statistica Visual Basic (SVB) для проверки гипотезы о нормальности остатков множественной регрессии. Возможности программирования на языке SVB в пакете STATISTICA. Проверка гипотезы в модели вторичного рынка жилья в г. Минске.
курсовая работа [573,1 K], добавлен 02.10.2009Методика разработки, практической апробации программы в среде Turbo Pascal по построению графика прямой линии регрессии. Формирование блок-схемы данной программы, ее листинг. Построение графика с помощью математических формул и графического модуля Graph.
контрольная работа [46,2 K], добавлен 22.07.2011Получение навыков работы в Mathcad при использовании интерполяции и регрессии. Постройте функции сглаживания и предсказания данных с помощью различных встроенных функций. Применение операций как калькулятор, математический анализ, матрица и вычисление.
лабораторная работа [205,1 K], добавлен 23.12.2014Анализ матрицы коэффициентов парной корреляции. Выбор факторных признаков для построения двухфакторной регрессионной модели. Оценка параметров регрессии по методу наименьших квадратов. Нахождение определителей матриц. Применение инструмента Регрессия.
контрольная работа [1,0 M], добавлен 13.01.2013Создание структуры интеллектуального анализа данных. Дерево решений. Характеристики кластера, определение групп объектов или событий. Линейная и логистическая регрессии. Правила ассоциативных решений. Алгоритм Байеса. Анализ с помощью нейронной сети.
контрольная работа [2,0 M], добавлен 13.06.2014Рассмотрение основ проведения корреляционного анализа по исходным данным группы студентов. Построение теоретической и эмпирической линий регрессии; проведение анализа с помощью программы "regres.exe". Представление копий экрана зависимости показателей.
контрольная работа [2,8 M], добавлен 07.06.2014Построение корреляционного поля, гипотеза связи исследуемых факторов. Определение коэффициента корреляции. Оценка статистической значимости вычисленных коэффициентов корреляции. Параметры уравнения линейной парной регрессии, коэффициента эластичности.
реферат [526,7 K], добавлен 10.11.2010Примеры работы с линейной интерполяцией и её результаты в графическом виде. Алгоритм кубической сплайн-интерполяции. Используемые функции линейной, обобщенной, полиномиальной регрессии. Графические возможности программы MathCAD и редактирование графиков.
презентация [2,7 M], добавлен 16.10.2013Разработка программы построения графика экспериментальных точек и полинома регрессии второй степени в среде Turbo Pascal. Блок-схемы алгоритмов используемых процедур. Листинг программы. Составление вектора свободных членов и матрицы коэффициентов.
курсовая работа [46,6 K], добавлен 24.11.2013Алгоритмы кластеризации данных, отбора факторов, построения множественной линейной регрессии, оценки параметров процесса на скользящем постоянном интервале. Решение задач анализа данных на нейронных сетях и результаты моделирования нелинейных функций.
контрольная работа [1,5 M], добавлен 11.01.2016