Importance of machine learning and data science in modern business
The article provides guidance on choosing cloud-based ML and data science solutions that meet operational strategies and crisis management needs. Further research is encouraged to examine the long-term effects on business innovation and market dynamics.
| Рубрика | Программирование, компьютеры и кибернетика |
| Предмет | Machine Learning |
| Вид | статья |
| Язык | английский |
| Прислал(а) | R. Reznikov |
| Дата добавления | 20.07.2024 |
| Размер файла | 37,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
International Business Machines (IBM) — транснациональная корпорация, один из крупнейших в мире производителей и поставщиков аппаратного и программного обеспечения. Прозвище компании — Big Blue. Основание IBM в период 1888—1924. Начало эры компьютеров.
презентация [1023,3 K], добавлен 14.02.2012Consideration of a systematic approach to the identification of the organization's processes for improving management efficiency. Approaches to the identification of business processes. Architecture of an Integrated Information Systems methodology.
реферат [195,5 K], добавлен 12.02.2016Проблемы оценки клиентской базы. Big Data, направления использования. Организация корпоративного хранилища данных. ER-модель для сайта оценки книг на РСУБД DB2. Облачные технологии, поддерживающие рост рынка Big Data в информационных технологиях.
презентация [3,9 M], добавлен 17.02.2016Data mining, developmental history of data mining and knowledge discovery. Technological elements and methods of data mining. Steps in knowledge discovery. Change and deviation detection. Related disciplines, information retrieval and text extraction.
доклад [25,3 K], добавлен 16.06.2012Методика и основные этапы построения модели бизнес-процессов верхнего уровня исследуемого предприятия, его организационной структуры, классификатора. Разработка модели бизнес-процесса в IDEF0 и в нотации процедуры, применением Erwin Data Modeler.
курсовая работа [1,6 M], добавлен 01.12.2013Классификация задач DataMining. Создание отчетов и итогов. Возможности Data Miner в Statistica. Задача классификации, кластеризации и регрессии. Средства анализа Statistica Data Miner. Суть задачи поиск ассоциативных правил. Анализ предикторов выживания.
курсовая работа [3,2 M], добавлен 19.05.2011A database is a store where information is kept in an organized way. Data structures consist of pointers, strings, arrays, stacks, static and dynamic data structures. A list is a set of data items stored in some order. Methods of construction of a trees.
топик [19,0 K], добавлен 29.06.2009Описание функциональных возможностей технологии Data Mining как процессов обнаружения неизвестных данных. Изучение систем вывода ассоциативных правил и механизмов нейросетевых алгоритмов. Описание алгоритмов кластеризации и сфер применения Data Mining.
контрольная работа [208,4 K], добавлен 14.06.2013Совершенствование технологий записи и хранения данных. Специфика современных требований к переработке информационных данных. Концепция шаблонов, отражающих фрагменты многоаспектных взаимоотношений в данных в основе современной технологии Data Mining.
контрольная работа [565,6 K], добавлен 02.09.2010Overview of social networks for citizens of the Republic of Kazakhstan. Evaluation of these popular means of communication. Research design, interface friendliness of the major social networks. Defining features of social networking for business.
реферат [1,1 M], добавлен 07.01.2016


