Navigating the complexity: pseudo-chaotic systems and machine learning scientific research group

Structure and properties of pseudo-chaotic systems. Using machine learning tools for pattern recognition and event prediction. Consideration of ethical issues and assessment of the implications for the synergy of environmental sciences and bioengineering.

Рубрика Программирование, компьютеры и кибернетика
Вид статья
Язык английский
Дата добавления 19.03.2024
Размер файла 22,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Navigating the complexity: pseudo-chaotic systems and machine learning scientific research group

Tymoteusz Miller Tymoteusz Miller PhD in biological sciences, assistant Professor at the Institute of Marine and Environmental Sciences Polish Society of Bioinformatics and Data Science BioData, Szczecin, Poland, Adrianna Eobodzinska Adrianna Eobodzinska 4th year student of Biotechnology, Faculty of Physical, Mathematical and Natural Sciences University of Szczecin Polish Society of Bioinformatics and Data Science BioData, Szczecin, Poland,

Irmina Durlik Irmina Durlik Msc. Eng. Capt (Master Mariner Unlimited) Research Assistant Maritime University of Szczecin Polish Society of Bioinformatics and Data Science BioData, Szczecin, Poland, Ewelina Kostecka Ewelina Kostecka PhD in mechanical engineering, Vice-Dean for Education, Faculty of Mechatronics and Electrical Engineering Maritime University of Szczecin Polish Society of Bioinformatics and Data Science BioData, Szczecin, Poland

Аннотация

Преодоление сложности: научно-исследовательская группа по псевдохаотическим системам и машинному обучению

Эта статья раскрывает сложную взаимосвязь между псевдохаотическими системами и машинным обучением, подчеркивая границу, на которой сложность сочетается с вычислительным мастерством. Псевдохаотические системы, характеризующиеся детерминированным, но в то же время непредсказуемым поведением, представляют собой уникальную проблему и возможность для научных исследований. Машинное обучение с его надежными возможностями распознавания образов и прогнозирования предлагает многообещающий инструментарий для расшифровки тонкой динамики этих систем. В тексте раскрывается сущность псевдохаотических систем, исследуется преобразующий потенциал машинного обучения и синергетическое слияние этих областей. В ходе этого исследования мы раскрываем глубокие последствия этой синергии для различных дисциплин, от наук об окружающей среде до здравоохранения и инженерии. В дискурсе также рассматриваются проблемы и этические соображения, присущие этому междисциплинарному направлению, в поддержку будущего, в котором сложность псевдохаотических систем будет не просто понята, но и использована для продвижения вперед и инноваций.

Ключевые слова: Псевдохаотические системы, Машинное обучение, Сложная динамика, Прогнозное моделирование, Междисциплинарные инновации

Summary

This discourse elucidates the intricate interplay between pseudo-chaotic systems and machine learning, highlighting a frontier where complexity meets computational prowess. Pseudo-chaotic systems, characterized by their deterministic yet intricately unpredictable behavior, present a unique challenge and opportunity for scientific exploration. Machine learning, with its robust pattern recognition and predictive capabilities, offers a promising toolkit for deciphering the nuanced dynamics of these systems. The text delves into the essence of pseudo-chaotic systems, explores the transformative potential of machine learning, and examines the synergistic fusion of these domains. Through this exploration, we uncover the profound implications of this synergy across various disciplines, from environmental science to healthcare and engineering. The discourse also addresses the challenges and ethical considerations inherent in this interdisciplinary pursuit, advocating for a future where the complexity of pseudo-chaotic systems is not merely understood but harnessed for advancement and innovation.

Keywords: Pseudo-Chaotic Systems, Machine Learning, Complex Dynamics, Predictive Modeling, Interdisciplinary Innovation

Introduction

In the vast expanse of scientific inquiry, the study of chaotic systems stands as a testament to the inherent complexity of natural phenomena.

These systems, characterized by their sensitive dependence on initial conditions and apparent random behavior, have long captivated the interest of researchers and theorists alike.

However, a distinct class of systems, known colloquially as pseudo-chaotic systems, presents a compelling divergence from their fully chaotic counterparts.

These systems, though deterministic in nature, exhibit dynamics that mimic the unpredictable behavior of truly chaotic systems, thus providing a unique vantage point for exploring the fine line between determinism and chaos [1 -3].

Simultaneously, in a seemingly disparate domain, the field of machine learning has emerged as a transformative force, reshaping industries and academic disciplines with its ability to unearth patterns intricately woven into vast and complex datasets.

Through the lens of supervised, unsupervised, and reinforcement learning paradigms, machine learning offers an unprecedented capacity for predictive modeling and data-driven discovery.

This capacity is particularly potent in its application to systems where traditional analytical approaches falter under the weight of complexity and non-linearity [4,5].

The confluence of pseudo-chaotic systems and machine learning represents a frontier of immense potential and profound complexity.

This synergy promises not only to deepen our understanding of pseudo-chaotic dynamics but also to harness these systems' intrinsic complexity to further refine the algorithms and models at the heart of machine learning. As such, the objective of this discourse is to meticulously explore the intricate interplay between the nuanced dynamics of pseudo-chaotic systems and the sophisticated pattern recognition capabilities of machine learning methodologies.

Through this exploration, we endeavor to illuminate the pathways through which these two domains can coalesce, paving the way for novel discoveries and innovative applications across a spectrum of scientific and engineering disciplines [6,7].

Understanding Pseudo-Chaotic Systems

The realm of pseudo-chaotic systems emerges as a fascinating confluence of deterministic order and unpredictable complexity. Distinguished from their truly chaotic counterparts, these systems do not adhere to the strict mathematical definition of chaos; yet, they display a level of complexity and unpredictability that resonates with the behavioral patterns of chaotic systems. Pseudo-chaotic systems are characterized by their deterministic nature, where the future behavior of the system can, in principle, be precisely determined from its initial conditions and governing equations. However, these systems exhibit dynamics that are intricate and complex, often resembling the stochastic nature of truly chaotic systems to the untrained eye [8,9].

Central to the understanding of pseudo-chaotic systems is the concept of sensitivity to initial conditions, albeit to a lesser degree than that observed in genuinely chaotic systems.

This sensitivity manifests in the form of long-term unpredictability, where minor alterations in the initial state of the system can lead to significantly divergent outcomes over time. However, unlike chaotic systems, where this sensitivity leads to an exponential divergence of trajectories, pseudo-chaotic systems may demonstrate a more subdued form of this behavior, constrained by the underlying deterministic rules [10,11 ].

Furthermore, pseudo-chaotic systems are often marked by their complex temporal or spatial behavior, which can include periodic or quasi-periodic oscillations interspersed with irregular, aperiodic fluctuations. This intricate dance between order and disorder renders these systems a rich subject for scientific inquiry, as they inhabit the liminal space between predictability and randomness.

The exploration of pseudo-chaotic systems extends across various domains, with examples manifesting in disciplines ranging from fluid dynamics and climatology to biological systems and even engineered networks. In each instance, these systems serve as a testament to the delicate balance between deterministic laws and the unpredictability that arises from complex interactions and non-linear dynamics [13,14].

The study of pseudo-chaotic systems is not merely an academic curiosity but a venture with profound implications. By deciphering the underpinnings of these systems, researchers and practitioners gain insights into the mechanisms that govern complex behaviors in nature and technology. This understanding paves the way for innovative approaches to modeling, prediction, and control strategies, thereby unlocking new potentials and applications in science and engineering. As such, the exploration of pseudo-chaotic systems stands at the nexus of theoretical intrigue and practical utility, offering a window into the intricate tapestry of order and chaos that permeates the natural and artificial world [15].

Intersecting Paths - Pseudo-Chaotic Systems in Machine Learning

The amalgamation of pseudo-chaotic systems and machine learning heralds a new epoch in the exploration of complex dynamics. This synergy leverages the robust pattern-recognition and predictive prowess of machine learning to decipher the intricacies embedded within pseudo-chaotic systems. In this fusion, the inherently deterministic yet complex nature of pseudo-chaotic systems poses both a challenge and an opportunity for machine learning algorithms [6].

Modeling and Analysis through Machine Learning. Machine learning, with its versatile array of algorithms, offers a powerful toolkit for modeling pseudo-chaotic systems. Through techniques ranging from deep neural networks to support vector machines, machine learning can approximate the non-linear dynamics that characterize these systems. The inherent capability of machine learning models to learn from data and adapt to new patterns makes them particularly suited for capturing the nuanced behaviors of pseudo-chaotic systems, which may elude traditional analytical approaches [16,17].

Case Studies and Applications. Numerous studies and applications underscore the potential of machine learning in understanding pseudo-chaotic systems. For instance, in fields such as meteorology and climatology, machine learning models have been employed to predict weather patterns and climate phenomena, where underlying pseudo-chaotic dynamics play a pivotal role. Similarly, in finance, machine learning algorithms have been used to forecast stock market trends, navigating through the pseudo-chaotic fluctuations driven by complex interactions of market factors. These applications not only demonstrate the practical utility of combining machine learning with pseudo- chaotic systems but also pave the way for future innovations in various domains [18,19].

Benefits and Challenges The integration of machine learning with pseudo-chaotic systems brings forth a myriad of benefits. Primarily, it allows for the modeling and prediction of complex systems where traditional methods may falter. Machine learning's adaptability and learning capabilities enable it to capture and predict the intricate patterns emerging from pseudo-chaotic dynamics. However, this integration is not devoid of challenges. Ensuring the accuracy and reliability of machine learning models in the context of pseudo-chaotic systems is paramount, given the potential for subtle nuances in the data to significantly impact outcomes. Moreover, the computational complexity of training and deploying sophisticated machine learning models poses a hurdle, necessitating ongoing advancements in algorithm efficiency and computational resources [20,21].

The intersection of pseudo-chaotic systems and machine learning is a domain ripe with opportunities and challenges. The potential of machine learning to unveil the underlying patterns and predict the behavior of pseudo-chaotic systems opens new frontiers in scientific research and practical applications. However, navigating this complex landscape requires a nuanced understanding of both the intricacies of pseudo-chaotic systems and the capabilities and limitations of machine learning algorithms. As we venture further into this interdisciplinary domain, the promise of uncovering deeper insights and achieving breakthroughs in understanding and harnessing the power of complex systems beckons [22,23].

Future Directions and Applications

As we stand on the brink of uncharted scientific territories, the interplay between pseudo-chaotic systems and machine learning beckons a future replete with transformative potential. This convergence not only holds the promise of advancing our comprehension of complex dynamics but also heralds the advent of novel applications across a spectrum of disciplines [20].

Advancements in Modeling and Analysis. Future advancements in machine learning, particularly in deep learning and neural networks, are poised to significantly enhance the modeling and analysis of pseudo-chaotic systems. The development of more sophisticated models, equipped with the capacity to handle higher-dimensional data and uncover deeper layers of complexity, will likely provide even more nuanced insights into the intricate workings of these systems. Additionally, improvements in algorithms for handling time-series data and predicting sequences could offer breakthroughs in understanding and forecasting the behavior of systems exhibiting pseudo-chaotic dynamics [21,24].

Emerging Applications across Disciplines. The implications of effectively integrating machine learning with pseudo- chaotic systems extend far beyond theoretical interests, permeating various practical domains. In fields like environmental science, more accurate climate models can be developed to predict weather patterns and assess the impacts of climate change. In healthcare, understanding biological systems exhibiting pseudo- chaotic behavior could lead to breakthroughs in disease prediction and treatment strategies. In engineering, the control and optimization of complex systems, such as power grids or traffic networks, could be significantly enhanced by leveraging insights gained from the study of pseudo-chaotic dynamics [25,26].

Challenges and Ethical Consideration. While the future is rife with possibilities, it also presents challenges that must be navigated with diligence and ethical consideration. Ensuring the robustness and interpretability of machine learning models in the context of pseudo-chaotic systems remains a paramount concern. The risk of overfitting or misinterpreting models necessitates a rigorous approach to validation and testing. Furthermore, as these models play increasingly pivotal roles in decision-making processes, addressing ethical considerations around transparency, accountability, and fairness becomes crucial [27,28].

The fusion of pseudo-chaotic systems and machine learning is not just an academic endeavor but a multidisciplinary voyage with the potential to redefine the boundaries of what is scientifically and practically achievable. As we chart this course, the commitment to rigorous research, continuous innovation, and mindful consideration of ethical implications will be instrumental in unlocking the full potential of this dynamic synergy. The journey ahead, though fraught with challenges, holds the promise of significant breakthroughs that will enrich our understanding of the world and empower us to shape a future where the complexity of pseudo-chaotic systems is not just understood but harnessed for the betterment of society [29,30]. machine learning bioengineering ethical

Conclusion

As we encapsulate the discourse on the confluence of pseudo-chaotic systems and machine learning, it is evident that this amalgamation represents a frontier teeming with intellectual richness and practical promise. The exploration of this dynamic interplay not only deepens our understanding of complex systems that straddle the realms of predictability and unpredictability but also amplifies our capacity to harness sophisticated machine learning techniques for deciphering and leveraging these intricate dynamics.

Throughout this discourse, we have traversed the conceptual landscape of pseudo-chaotic systems, appreciating their unique position between deterministic order and chaotic unpredictability. We delved into the robust capabilities of machine learning, a field that stands as a testament to human ingenuity in pattern recognition and predictive modeling. The synthesis of these domains illuminates a path forward, marked by the potential to unravel the complexities of systems that mirror the nuanced and multifaceted nature of the world around us.

The journey through the intersection of pseudo-chaotic systems and machine learning is not without its challenges. The intricacies of modeling complex, quasi- unpredictable systems demand rigorous methodologies, computational precision, and an unwavering commitment to validation and ethical considerations. However, the prospects of this endeavor are as profound as the challenges are formidable. The potential to revolutionize fields as diverse as climatology, finance, healthcare, and engineering beckons, promising advancements that are not only scientifically groundbreaking but also societally transformative.

In conclusion, the synergy between pseudo-chaotic systems and machine learning is more than an academic curiosity; it is a narrative of human inquiry and innovation. It is a testament to our relentless pursuit of knowledge and our unyielding desire to unravel the mysteries of complexity. As we stand on the precipice of this new frontier, we are reminded of the power of interdisciplinary collaboration, the potential of advanced computational techniques, and the promise of a future where the chaotic and the complex are not merely understood but mastered and harnessed. The path ahead is replete with opportunities and challenges alike, beckoning a future where the confluence of pseudo-chaotic systems and machine learning shapes the next horizon of scientific discovery and technological advancement.

References

[1] Balootaki, M.A.; Rahmani, H.;Moeinkhah, H.;Mohammadzadeh, A. On the Synchronization and Stabilization of Fractional-Order Chaotic Systems: Recent Advances and Future Perspectives. Physica A: Statistical Mechanics and its Applications 2020, 551, 124203, doi:10.1016/j.physa.2020.124203.

[2] Fan, H.; Jiang, J.; Zhang, C.; Wang, X.; Lai, Y.-C. Long-Term Prediction of Chaotic Systems with Machine Learning. Phys Rev Res 2020, 2, 012080, doi:10.1103/PhysRevResearch.2.012080.

[3] Liu, T.; Yan, H.; Banerjee, S.; Mou, J. A Fractional-Order Chaotic System with Hidden Attractor and Self-Excited Attractor and Its DSP Implementation. Chaos Solitons Fractals 2021145, 110791, doi:10.1016/j.chaos.2021.110791.

[4] Gao, X.; Mou, J.; Xiong, L.; Sha, Y.; Yan, H.; Cao, Y. A Fast and Efficient Multiple Images Encryption Based on Single-Channel Encryption and Chaotic System. Nonlinear Dyn 2022108, 613-636, doi:10.1007/s11071-021-07192-7.

[5] Rafayelyan, M.; Dong, J.; Tan, Y.; Krzakala, F.; Gigan, S. Large-Scale Optical Reservoir Computing for Spatiotemporal Chaotic Systems Prediction. Phys RevX2020, 10, 041037, doi:10.1103/PhysRevX.10.041037.

[6] Karthikeyan, M.; Selvan, V. FPGA Centric Attention Based Deep Learning Network Evoked Chaotic Encryption to Mitigate Side Channel Attacks. Proceedings of the Bulgarian Academy of Sciences 2023, 76, 936-945, doi:10.7546/CRABS.2023.06.14.

[7] Tang, H.; Rabault, J.; Kuhnle, A.; Wang, Y.; Wang, T. Robust Active Flow Control over a Range of Reynolds Numbers Using an Artificial Neural Network Trained through Deep Reinforcement Learning. Physics of Fluids 2020, 32, doi:10.1063/5.0006492.

[8] Yang, C.; Taralova, I.; Loiseau, J.-J.; El-Assad, S. A Stream Cipher Based on Fractional Pseudo Chaotic Random Number Generator. In Proceedings of the 2020 15th International Conference for Internet Technology and Secured Transactions (ICITST); IEEE, December 8 2020; pp. 1 -6.

[9] Zelinka, I.; Diep, Q.B.; Snasel, V.; Das, S.; Innocenti, G.; Tesi, A.; Schoen, F.; Kuznetsov, N.V. Impact of Chaotic Dynamics on the Performance of Metaheuristic Optimization Algorithms: An Experimental Analysis. Inf Sci (N Y) 2022, 587, 692-719, doi:10.1016/j.ins.2021.10.076.

[10] Qiao, Z.; Taralova, I.; El Assad, S. A Reliable Encryption Oriented Pseudo-Chaotic Number Generator Using a Key Space Expandable Strategy. In Proceedings of the 2020 15th International Conference for Internet Technology and Secured Transactions (ICITST); IEEE, December 8 2020; pp. 1-5.

[11] Yang, C.; Taralova, I.; Loiseau, J.-J.; El Assad, S. Design of a Fractional Pseudo-Chaotic Random Number Generator. International Journal of Chaotic Computing 2020, 7, 166178, doi:10.20533/ijcc.2046.3359.2020.0022.

[12] Dridi, F.; El Assad, S.; El Hadj Youssef, W.; Machhout, M.; Lozi, R. The Design and FPGA- Based Implementation of a Stream Cipher Based on a Secure Chaotic Generator. Applied Sciences 2021, 11, 625, doi:10.3390/app11020625.

[13] Souza, C.E.C.; Chaves, D.P.B.; Pimentel, C. One-Dimensional Pseudo-Chaotic Sequences Based on the Discrete Arnold's Cat Map Over A; m. IEEE Transactions on Circuits and Systems II: Express Briefs 2021,68, 491 -495, doi:10.1109/TCSII.2020.3010477.

[14] S. Salman, D.;Rokan Naif, J. COMPARATIVE STUDY OF CHAOTIC SYSTEM FOR ENCRYPTION. Iraqi Journal for Computers and Informatics 2023, 49, 83-92, doi:10.25195/ijci.v49i2.457.

[15] Kushnir, M.; Vovchuk, D.; Haliuk, S.; Ivaniuk, P.; Politanskyi, R. Approaches to Building a Chaotic Communication System. In; 2021; pp. 207-227.

[16] Kaur, H.; Kumari, V. Predictive Modelling and Analytics for Diabetes Using a Machine Learning Approach. Applied computing and informatics 2020, 78, 90-100.

[17] Alves, D.W.F.; Flynn, M.O. Machine Learning, Quantum Chaos, and Pseudorandom Evolution. Phys Rev A (Coll Park) 2020, 707, 052338, doi:10.1103/PhysRevA.101.052338.

[18] Cui, J.; Shen, B.-W. A Kernel Principal Component Analysis of Coexisting Attractors within a Generalized Lorenz Model. Chaos Solitons Fractals 2021, 746, 110865, doi:10.1016/j.chaos.2021.110865.

[19] Mehling, O.; Borner, R.; Lucarini, V. Limits to Predictability of the Asymptotic State of the Atlantic Meridional Overturning Circulation in a Conceptual Climate Model. Physica D 2024, 459, 134043, doi:10.1016/j.physd.2023.134043.

[20] Ramadevi, B.; Bingi, K. Chaotic Time Series Forecasting Approaches Using Machine Learning Techniques: A Review. Symmetry (Basel) 2022, 74, 955, doi:10.3390/sym14050955.

[21] Naik, R.B.; Singh, U. A Review on Applications of Chaotic Maps in Pseudo-Random Number Generators and Encryption. Annals of Data Science 2022, doi:10.1007/s40745- 021-00364-7.

[22] Wang, T.; Zhang, L.; Hu, W. Bridging Deep and Multiple Kernel Learning: A Review. Information Fusion 2021, 67, 3-13, doi:10.1016/j.inffus.2020.10.002.

[23] Adeel, A.; Ahmad, J.; Larijani, H.; Hussain, A. A Novel Real-Time, Lightweight Chaotic- Encryption Scheme for Next-Generation Audio-Visual Hearing Aids. Cognit Comput 2020, 72, 589-601, doi:10.1007/s12559-019-09653-z.

[24] Malartic, Q.; Farchi, A.; Bocquet, M. State, Global, and Local Parameter Estimation Using Local Ensemble Kalman Filters: Applications to Online Machine Learning of Chaotic Dynamics. Quarterly Journal of the Royal Meteorological Society 2022, 748, 2167-2193, doi:10.1002/qj.4297.

[25] Willard, J.; Jia, X.; Xu, S.; Steinbach, M.; Kumar, V. Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems. ACM Comput Surv 2023, 55, 1 -37, doi:10.1145/3514228.

[26] Safonova, A.; Ghazaryan, G.; Stiller, S.; Main-Knorn, M.; Nendel, C.; Ryo, M. Ten Deep Learning Techniques to Address Small Data Problems with Remote Sensing. International Journal of Applied Earth Observation and Geoinformation 2023, 725, 103569, doi:10.1016/j.jag.2023.103569.

[27] Arabi, A.A. Artificial Intelligence in Drug Design: Algorithms, Applications, Challenges and Ethics. Future Drug Discov 2021,3, doi:10.4155/fdd-2020-0028.

[28] Saghiri, A.M.; Vahidipour, S.M.; Jabbarpour, M.R.; Sookhak, M.; Forestiero, A. A Survey of Artificial Intelligence Challenges: Analyzing the Definitions, Relationships, and Evolutions. Applied Sciences 2022, 72, 4054, doi:10.3390/app12084054.

[29] Kumar, P.; Rahman, M.; Namasudra, S.; Moparthi, N.R. Enhancing Security of Medical Images Using Deep Learning, Chaotic Map, and Hash Table. Mobile Networks and Applications 2023, doi:10.1007/s11036-023-02158-y.

[30] Vellaiparambill, A.; Natchimuthu, N. Ethical Tenets of Stock Price Prediction Using Machine Learning Techniques: A Sustainable Approach. ECS Trans 2022, 707, 137-149, doi:10.1149/10701.0137ecst.

Размещено на Allbest.ru


Подобные документы

  • Machine Translation: The First 40 Years, 1949-1989, in 1990s. Machine Translation Quality. Machine Translation and Internet. Machine and Human Translation. Now it is time to analyze what has happened in the 50 years since machine translation began.

    курсовая работа [66,9 K], добавлен 26.05.2005

  • Machine Learning как процесс обучения машины без участия человека, основные требования, предъявляемые к нему в сфере медицины. Экономическое обоснование эффективности данной технологии. Используемое программное обеспечение, его функции и возможности.

    статья [16,1 K], добавлен 16.05.2016

  • Управление электронным обучением. Технологии электронного обучения e-Learning. Программное обеспечение для создания e-Learning решений. Компоненты LMS на примере IBM Lotus Learning Management System и Moodle. Разработка учебных курсов в системе Moodle.

    курсовая работа [146,6 K], добавлен 11.06.2009

  • Общие понятия об e-learning. Области применения продукта. Модели и технологии. Исследование и анализ программных инструментов. Создание учебного курса для преподавателей инженерно-экономического факультета. Оценка эффективности внедрения такого обучения.

    дипломная работа [4,7 M], добавлен 03.05.2018

  • Сравнение эталонных моделей OSI, TCP. Концепции OSI: службы; интерфейсы; протоколы. Критика модели, протоколов OSI. Теория стандартов Дэвида Кларка (апокалипсис двух слонов). Плохая технология как одна из причин, по которой модель OSI не была реализована.

    реферат [493,1 K], добавлен 23.12.2010

  • Lines of communication and the properties of the fiber optic link. Selection of the type of optical cable. The choice of construction method, the route for laying fiber-optic. Calculation of the required number of channels. Digital transmission systems.

    дипломная работа [1,8 M], добавлен 09.08.2016

  • Consideration of a systematic approach to the identification of the organization's processes for improving management efficiency. Approaches to the identification of business processes. Architecture of an Integrated Information Systems methodology.

    реферат [195,5 K], добавлен 12.02.2016

  • Basic assumptions and some facts. Algorithm for automatic recognition of verbal and nominal word groups. Lists of markers used by Algorithm No 1. Text sample processed by the algorithm. Examples of hand checking of the performance of the algorithm.

    курсовая работа [22,8 K], добавлен 13.01.2010

  • Блог: понятие, функции, классификация. Политика, быт, путешествие, образование, мода, музыка. Drupal, wordpress, textpattern, nucleus CMS, inTerra blog machine как популярные движки для блогов. Особенности выбора темы оформления странички пользователя.

    контрольная работа [23,3 K], добавлен 18.09.2014

  • International Business Machines (IBM) — транснациональная корпорация, один из крупнейших в мире производителей и поставщиков аппаратного и программного обеспечения. Прозвище компании — Big Blue. Основание IBM в период 1888—1924. Начало эры компьютеров.

    презентация [1023,3 K], добавлен 14.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.