Программный комплекс обработки вибрационных сигналов и оценки технического состояния роторного оборудования

Существенная особенность применения преобразования Фурье для обработки вибрационных сигналов в целях диагностики технического состояния и экспериментальных исследований. Проведение исследования главного интерфейсного окна разработанного приложения.

Рубрика Программирование, компьютеры и кибернетика
Вид статья
Язык русский
Дата добавления 24.08.2020
Размер файла 848,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Программный комплекс обработки вибрационных сигналов и оценки технического состояния роторного оборудования

Широков С.В., Майоров С.В., Соломин О.В.

Современная тенденция в улучшении технико-экономических показателей турбомашин, основанная на повышении эффективности работы при одновременном снижении габаритов, массы и стоимости агрегатов, приводит к необходимости увеличения частот вращения их роторов [1, 2]. Следствием этого является рост сил, действующих в опорах и передаваемых на корпус агрегата, и повышение амплитуд колебаний ротора. Особенно остро эта проблема проявляет себя в роторных системах с опорами жидкостного трения. Очевидно, что работа машины в таких условиях требует организации соответствующих мероприятий по мониторингу технического состояния и диагностике зарождающихся дефектов работы вращающегося оборудования. Другой важной задачей, требующей получения точной и полной информации о динамических процессах, происходящих в роторной системе, является проведение экспериментальных исследований при проектировании и отладке опытных образцов вновь создаваемого или модернизируемого оборудования.

Наиболее достоверную информацию о работе роторной системы с опорами жидкостного трения можно получить, анализируя данные вибрационных сигналов, полученные с бесконтактных датчиков перемещений [1 3]. Это позволяет строить траектории движения цапфы ротора в радиальном зазоре подшипника, а также получать необходимые развертки колебательных процессов во временной области.

Однако временная реализация вибрационного сигнала, получаемая непосредственно с датчика, является малоинформативной с точки зрения идентификации технического состояния исследуемого объекта. Причина заключается в том, что исходный сигнал представляет собой совокупность различных низко- и высокочастотных компонент, каждая из которых несет свою информацию о динамических процессах. Кроме этого, исходный сигнал является, как правило, зашумленным [3 5]. В настоящее время существуют несколько методов анализа вибрационных сигналов и оценки технического состояния роторного оборудования: метод траекторий, спектральный анализ, анализ спектра огибающей вибрационного сигнала, вейвлетный анализ.

Метод траекторий (метод переходных режимов) является эффективным средством изучения влияния нелинейности реакций смазочного слоя и позволяет моделировать реальное динамическое поведение ротора. Метод основан на совместном численном интегрировании системы уравнений гидродинамики несущего слоя и уравнений движения ротора. Вид и размеры траектории движения центра цапфы определяются видом и характером нагружения, геометрическими и рабочими параметрами системы. Траектории движения цапфы представляют собой геометрическое место точек, определяющих положение центра опорной части ротора, движущегося под действием системы внешних возмущающих сил и реакций смазочного слоя, в конкретный момент времени. Кроме того, для различных дефектов получен характерный внешний вид траектории. Таким образом, анализ внешнего вида траектории является одним из первых этапов в диагностировании дефектов узлов роторных машин.

Еще одним распространенным методом обработки вибрационных сигналов в целях диагностики технического состояния и экспериментальных исследований является применение преобразования Фурье [3 6], т.е. замена временной реализации вибрационного сигнала на его частотную реализацию. Частотное представление (спектр) предоставляет возможность анализа отдельных гармонических составляющих сигнала. Таким образом, по наличию тех или иных частотных компонент в вибрационном сигнале можно судить о наличии определенного дефекта, определить техническое состояние объекта в целом и т.д. [3, 5]. Помимо этого, процедура преобразования Фурье относительно проста в реализации и достаточно отработана в практическом применении.

Однако использование Фурье-анализа не всегда дает необходимую информацию. Так, например, в тех случаях когда механизм формирования колебательных сил в узлах вращающегося оборудования является нелинейным, и эти силы достаточно часто, особенно при наличии в узлах дефектов, представляют собой аддитивно-мультипликативную смесь стационарных компонент, каждая из которых может содержать как периодические, так и стационарные случайные составляющие, спектральный анализ ведет к потере информации, содержащейся в характеристиках каждой из компонент. В таких ситуациях решением является спектральный анализ огибающей вибрационного сигнала, который широко используется, например, при диагностировании подшипников качения [5].

В последнее время активно развивается направление, связанное с применением вейвлетов в задачах анализа вибрационных сигналов. Данный математический аппарат лишен недостатков преобразования Фурье. Например, используя вейвлет-преобразование можно выделить не только частотные составляющие сигнала, но и четко локализовать во времени появление отдельных спектральных составляющих. Эта возможность появилась в связи с тем, что функции, используемые в вейвлет-преобразовании, хорошо локализованы во временной области. В преобразовании Фурье базисные функции (синусоиды и косинусоиды) определены на всей временной оси и поэтому не могут выявить появление спектральных составляющих сигнала в определенный момент времени.

Различные математические и инженерные пакеты, такие как Maple, MATLAB, LabVIEW, MathCAD и др. содержат математический аппарат, реализующий выше перечисленные методы обработки вибрационных сигналов. Но такие программные пакеты являются широкопрофильными и поэтому их использование в узкоспециализированных задачах обработки вибрационных сигналов является достаточно нерациональным и малопродуктивным. вибрационный сигнал интерфейсный приложение

В связи с этим возникла необходимость в создании программного обеспечения, которое бы имело удобный интерфейс и содержало бы в себе возможность применения различных методов обработки вибрационных сигналов.

Авторами был разработан программный комплекс для анализа вибрационных сигналов роторных машин, в котором реализованы выше описанные методы анализа вибрационных сигналов. Помимо этого, поскольку любой сигнал по своей природе является зашумленным, разработанное программное обеспечение имеет механизм фильтрации.

Внешний вид разработанного приложения представлен на рисунке 1.

Рисунок 1 - Главное интерфейсное окно разработанного приложения

В данном окне отображаются развертки колебаний центра цапфы ротора по осям X и Y. В качестве данных используются сигналы, снятые с экспериментальной установки. Для работы программы исходные данные сохраняются либо в виде бинарных файлов, либо в виде ASCII-кодов.

Также в главном окне отображаются опции фильтрации, поскольку удаление шумовых компонент из вибрационного сигнала является одним из первых этапов обработки. В данном приложении используются фильтры Баттерворта, Чебышева 1-го и 2-го рода, эллиптические фильтры и фильтры Бесселя. Для использования фильтров необходимо задать частоту дискретизации сигнала, указать вид фильтра: фильтр низких частот (ФНЧ), фильтр высоких частот (ФВЧ), полосовой или режекторный; а также частоту среза и порядок фильтра. Следует отметить, что в случае, если вид фильтра полосовой или режекторный, то частота среза задается в виде вектора, состоящего из двух элементов. Параметры RP и RS определяют уровень пульсации амплитудно-частотной характеристики (АЧХ) фильтра в полосе пропускания и в полосе задерживания для некоторых видов фильтров.

На рисунке 2 приведен пример фильтрации исходных данных. В качестве фильтра используется ФНЧ фильтр Баттерворта 5-го порядка с частотой среза равной 250 Гц. Выбор типа фильтра, а также частоты среза и порядка определяется в зависимости от того, какие частоты присутствуют в сигнале, и какие частоты необходимо выделить. Данный тип фильтра не имеет уровней пульсации АЧХ, поэтому параметры RP и RS не указаны.

Рисунок 2 - Отфильтрованные исходные данные

Используя развертки колебаний по осям X и Y можно построить траекторию движения центра цапфы ротора - кнопка «Построить траекторию» главного интерфейсного окна. Развертки колебаний и построенная траектория движения приведены на рисунке 3.

Кнопка главного интерфейсного окна «Фурье-спектр» отображает спектральное представление исходных данных по каналам X и Y. Для построения спектров используется алгоритм быстрого преобразования Фурье. В том случае, если сначала было выполнено построение огибающей вибрационного сигнала, нажатие кнопки «Фурье-спектр» приведет к построению спектра огибающей вибрационного сигнала.

Рисунок 3 - Развертки колебаний и траектория движения ротора

В данном программном комплексе реализован метод непрерывного вейвлет-преобразования, который бурно развивается в последнее время в области цифровой обработки сигналов. Непрерывное вейвлет-преобразование задается по аналогии с преобразованием Фурье, путем вычисления вейвлет-коэффициентов C(a,b) по соотношениям вида [7,8, 9]:

.

Следует отметить, что в качестве базисных функций, в отличие от преобразования Фурье, где используются синусоиды и косинусоиды, в вейвлет-преобразовании используются функции, удовлетворяющие условию:

где - базисная функция.

Подробнее о теории вейвлет-преобразования можно узнать в работах [7, 8, 9].

При выборе опции вейвлет-анализ в главном интерфейсном окне появится новое окно, в котором для анализа исходного сигнала необходимо указать дополнительные параметры.

Во-первых, необходимо выбрать тип вейвлета. На данном этапе существует возможность выбора 8 типов вейвлетов. Также для некоторых вейвлетов (например, вейвлеты Добеши, Гаусса) необходимо указать его порядок.

Во-вторых, требуется задать количество вейвлет-коэффициентов, которые будут рассчитаны, а также начальное значение коэффициента и шаг изменения.

Рисунок 4 - Расчет необходимого количества коэффициентов

В результате непрерывного вейвлет-преобразования получается трехмерный график, который принято называть скейлограммой (от англ. scale - масштаб). По оси абсцисс отложены отсчеты анализируемого сигнала, по оси ординат - номера рассчитанных коэффициентов (масштабов), а по оси аппликат - значения вейвлет-коэффициентов. Скейлограмма также частотно-временное описание сигнала, как и преобразование Фурье. Но в силу того, что вейвлеты лучше локализованы во временной области, чем базисные функции Фурье-преобразования, то и по скейлограмме значительно легче определить момент появления определенной частотной составляющей.

Следует отметить, что каждому номеру вейвлет-коэффициента соответствует своя частота. Но в силу того, что выбор базисных функций для вейвлет-анализа достаточно обширен, для разных вейвлетов определенная частота будет соответствовать различным номерам коэффициентов.

Для того, чтобы определить количество вейвлет-коэффициентов необходимых для выявления определенной частоты, в окне вейвлет-анализа предназначена область «Предварительный анализ». Исходными данными являются частота дискретизации анализируемого сигнала и частота, которую мы хотим выявить, используя вейвлет-преобразования. Далее для каждого вейвлета будет рассчитан номер коэффициента, которому соответствует указанная частота.

Рисунок 5 - Анализ сигнала с использованием непрерывного вейвлет-преобразования

Например, если исходный сигнал снят с частотой 12,5 кГц и необходимо выявить частоту 75 Гц, то используя в анализе вейвлет Хаара, необходимо рассчитать минимум 166 коэффициентов, а для вейвлета «Сомбреро» («Мексиканская шляпа») всего 42 коэффициента.

Пример анализа вибрационного сигнала с помощью непрерывного вейвлет-преобразования приведен на рисунке 5. В качестве анализирующего вейвлета был взят вейвлет Добеши 5-го порядка. Количество вейвлет-коэффициентов равно 512. Частота дискретизации сигнала равна 12,5 кГц.

В данный момент авторами статьи ведется разработка экспертной системы, которая по данным, полученным после анализа сигналов различными методами, формировала бы диагностическое заключение о состоянии роторного оборудования. Основным моментом здесь является выявление диагностических признаков дефектов роторных узлов на основе непрерывного вейвлет-преобразования, и формирование базы данных этих признаков в виде набора скейлограмм характерного вида. В дальнейшем предполагается реализация других методов вибрационной диагностики: метод ПИК-фактора, кепстральный и биспектральный анализ. Также планируется использование при обработке сигналов адаптивных фильтров Калмана и дискретного вейвлет-преобразования.

Литература

1. Ehrich F. et al. Handbook of rotordynamics. - NY: McGraw-Hill, Inc., 1992. - 412 p.

2. Vance J. Rotordynamics of turbomachinery. - NY: John Willey & Sons, 1988. - 338 p.

3. Герике Б.Л. Мониторинг и диагностика технического состояния машинных агрегатов. В 2 Ч. - Кемерово: КузГТУ, 1999.

4. Добрынин С.А., Фельдман М.С., Фирсов Г.И. Методы автоматизированного исследования вибрации машин. - М.: Машиностроение, 1987. - 224 с.

5. Барков А.В., Баркова Н.А., Азовцев А.Ю. Мониторинг и диагностика роторных машин по вибрации. - СПб: Изд. центр СПб ГМТУ, 2000. - 159 с.

6. Сергиенко А.Б. Цифровая обработка сигналов. - СПб.: Питер, 2002. - 608 с.

7. Дьяконов В.П. Вейвлеты. От теории к практике. - М.: СОЛОН-Р, 2002. - 448 с.

8. Добеши И. Десять лекций по вейвлетам. - Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. - 464 с.

9. К. Чуи. Введение в вейвлеты. Пер. с англ. Жилейкина Я.М. - М.: Мир, - 2001. - 412 с.

Размещено на Allbest.ru


Подобные документы

  • Выбор элементной базы: микроконтроллера; микросхем для реализации системной шины; памяти; кварцевого генератора; сторожевого таймера; индикатора и коммутатора; последовательного порта. Программное обеспечение микропроцессорной системы обработки сигналов.

    курсовая работа [259,3 K], добавлен 19.04.2012

  • Основы организации приложения в Windows. Посылка и передача сообщений для окон. Создание и отображение главного окна приложения. Деактивация приложения, его фазы. Сообщения клавиатуры и функции для работы с ней. Определение состояния отдельных клавиш.

    лекция [65,7 K], добавлен 24.06.2009

  • Моделирование процесса обработки 500 сигналов, поступающих с датчиков. Определение среднего времени задержки сигналов в канале и линии-ЭВМ и вероятности переполнения входных накопителей. Разработка и описание алгоритма функционирования программной модели.

    курсовая работа [140,7 K], добавлен 09.04.2013

  • Использование цифровых сигналов для кодирования информации, регистрации и обработки; унификация операций преобразования на всех этапах ее обращения. Задачи и физическая трактовка процессов идеальной интерполяции сигналов алгебраическими полиномами.

    реферат [1,3 M], добавлен 12.03.2011

  • Современные семейства ПЛИС фирмы Xilinx, их характеристики и значимость в процессе построения систем цифровой обработки сигналов. Создание базы параметров, фактов и запрещенных комбинаций для решения открытой задачи поискового проектирования модели ПЛИС.

    курсовая работа [3,6 M], добавлен 14.12.2012

  • Описание истории развития информационных технологий. Исследование предпочтений по использованию программного обеспечения пользователя персонального компьютера начального уровня и разработка интерфейсного приложения в среде программирования Delphi.

    дипломная работа [2,0 M], добавлен 14.01.2012

  • Экспериментальная психология как набор инструментов и принципов психологического исследования, ее математическое обеспечение. Проектирование информационной системы: постановка технического задания, используемые технологии и обоснование, модернизация.

    дипломная работа [1,5 M], добавлен 12.01.2012

  • Особенности и классификация обучающих программных средств обучения. Обзор методов обработки экспертной информации. Требования к программному комплексу лабораторных работ. Построение логической модели данных. Описание компьютерной реализации для студента.

    дипломная работа [2,0 M], добавлен 19.01.2017

  • Обзор существующего программного обеспечения для автоматизации выделения границ на изображении. Разработка математической модели обработки изображений и выделения контуров в оттенках серого и программного обеспечения для алгоритмов обработки изображений.

    дипломная работа [1,7 M], добавлен 27.03.2013

  • Определение информационной системы как совокупности технического и программного обеспечения, предназначенного для обеспечения людей необходимой им информацией. Классификация ИС по области применения, степени автоматизации, характеру обработки данных.

    реферат [17,8 K], добавлен 06.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.