Процессор: типы и принцип работы

Процессоры, предназначенные для работы одной копии операционной системы на нескольких ядрах. Суть установки процессора, поддерживаемый тип Socket-а (расположение ножек сокета). Частота генераторов тактовых импульсов. Тип архитектуры процессора.

Рубрика Программирование, компьютеры и кибернетика
Вид лекция
Язык русский
Дата добавления 28.03.2020
Размер файла 3,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru//

Центральный процессор- это высокоинтегрированная сверхбольшая интегральная схема сложной структуры в едином полупроводниковом кристалле.

В англоязычной литературе ЦП называют CPU -- centralprocessorunit или mainprocessor. Осуществляет координацию потоков данных и их обработку. Аппаратура ЦП обеспечивает эффективную и гибкую защиту памяти, контролируемый доступ к ресурсам оперативной системы, изоляцию индивидуальных прикладных программ, малое время реакций на прерывания. ЦП можно назвать сердцем ЭВМ. Архитектура ЭВМ определяется типом центрального процессора. Для размещения процессора на материнской плате используется специальное гнездо, называемое Socket.

Фирмы производители:

AMD

Intel операционный ядро процессор

Сокеты различаются по размеру, количеству ножек, например, у производителя процессоров AMD ножки находятся на самом процессоре а у того же intel с сокетом 775, ножек на процессоре нет а находятся они на самом сокете.

Ещё стоит заметить, что к определенному сокету подходит только определён ный вид процессоров, как по производителю, так и по модели процессора. Но бывают исключения. Например, к сокету LGA775 подходит, как процессор Intel core 2 duo (двух ядерный) так и Intel coreQuad (четырех ядерный). У более новых процессоров intel i5,i6,i7совершенно другой сокет, который подойдет только к серии с приставкой «i».

Socket (ножки на процессоре)

Ну и конечно сокет от AMD не когда несовместим с процессорами от Intel и наоборот.

Проблема теплообмена стала актуальной с повышением рабочей тактовой частоты процессоров и ужесточением технологических норм при производстве кристаллов. Снижение рабочей температуры процессора на 10 градусов ведет к удвоению времени его безотказной работы, при этом скорость движения электронов в полупроводниках также возрастает вдвое. Для охлаждения процессора используется малогабаритный вентилятор, установленный на радиаторе -- CPU Cooler. Эта система снижает температуру процессора примерно на 40 градусов.

Структура ЦП

Каждый ЦП имеет:

определённое число элементов памяти - регистров (разрядность внутренних регистров - 1 - 4 машинных слова - 8- 64 бита);

арифметико - логическое устройство (АЛУ);

устройство управления (УУ).

МПП служит для кратковременного хранения, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины. МПП строится на регистрах и используется для обеспечения высокого быстродействия.

Регистры (или ЗУ)используются для временного хранения исполняемой команды, адресов памяти, обрабатываемых данных и другой внутренней информации ЦП.

Адрес (указатель на ячейку памяти)символ или группа символов (код),

которые идентифицируют регистр, отдельные части памяти и другие источники данных. Каждый адрес уникален, процессор использует его для поиска инструкций программы и данных, хранящихся в этой области памяти.

Помимо регистров в процессорах (начиная с 80486) имеется и сверхбыстрая память небольшого объёма - кэш (сache)- запоминающее устройство с малым временем доступа.

Кэш - буфер между ЦП и оперативной памятью (буфер обмена между медленным устройством хранения данных и более быстрым) - процессорная память. Принцип его действия основан на том, что простой более быстрого устройства сильно влияет на суммарную производительность, а также - что с наибольшей вероятностью запрашиваются данные, сохраненные сравнительно недавно. Поэтому между устройствами помещают небольшой (по сравнению со всеми хранимыми данными) буфер относительно быстрой памяти (обычно статической памяти SRAM, StaticRandomAccessMemory, которая использует статический триггер, выполненный на транзисторных ключах). Это позволяет снизить потери быстрого устройства как на записи (запись производится в быстрый буфер, а последующая перезапись в медленное устройство производится уже без участия быстрого), так и на чтении (недавно записанные данные доступны для чтения из "быстрого" буфера.

Применение статической памяти, как правило, ограничено относительно небольшой по объему кэш-памятью первого (Level 1 - L1), второго (L2) или третьего (L3) уровней (если она не интегрирована на один кристалл с процессором). Так, объем L2 (L3) обычно не превышает 1-2 Мб (чаще всего он составляет 256-512 Кб). Объем еще более быстрого L1 (как правило, интегрируемого на кристалле с процессором) - вообще до

Кб.

Арифметико логическое устройство производит арифметическую и

логическую обработку данных.

Устройство управления:

формирует и подает во все блоки машины в нужные моменты времени

определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполняемой операции и результатами предыдущих операций;

формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки ЭВМ;

опорную последовательность импульсов устройство управления получает от генератора тактовых импульсов.

Генератор тактовых импульсов вырабатывает последовательность электрических импульсов; частота генерируемых импульсов определяет тактовую частоту машины.

Каждый импульс переключает шаг обработки, необходимый для завершения машинной команды (на одну команду может потребоваться несколько шагов). Промежуток времени между соседними импульсами определяет время одного такта работы машины или просто такт работы машины.

Такт - время для передачи некоторого значения от одного регистра к другому внутри ЦП.

Параметры ЦП:

тип архитектуры или серия;

система поддерживаемых команд;

тактовая частота;

разрядность шины адреса и шины данных.

Тип архитектуры, как правило, определяется фирмой производителем оборудования (Intel, AMD - 95% рынка платформы х86 IBM PC, VIA). С типом архитектуры тесно связан набор поддерживаемых командили инструкций, и их расширений. Эти два параметра, в основном, определяют качественный уровень возможностей персонального компьютера и в большой степени уровень его производительности.

Частота генератора тактовых импульсов (тактовая частота - CPU-clock) является одной из основных характеристик персонального компьютера и во многом определяет скорость его работы, ибо каждая операция в машине выполняется за определенное количество тактов. Единица измерения - МГц (миллион тактов в секунду) или ГГц (миллиард тактов в секунду).

Разрядность - максимальная длина слова, которое может храниться в регистре. операционный ядро процессор

(1 разряд = бит - единица объёма памяти).

Шина - физический канал передачи электрических сигналов в ПК и связи между устройствами.

Шина адреса (адресная) ША- часть шины ЦП, выделенная для передачи адреса памяти или устройства.

Шина данных ШД- группа сигнальных линий (проводников), предназначенная для параллельной передачи данных между элементами ПК. Разрядность шины определяет пропускную способность ЦП.

Разрядность ШД ? ША.

Ёмкость регистров зависит от разрядности шины данных и определяет количество информации, которое может быть обработано одновременно.

Адресное пространство памяти- определяется разрядностью адресных регистров и адресной шины ЦП.

Быстродействие ЦП- определяется тактовой частотой внутреннего генератора ЦП, набором команд, гибкостью, системой прерываний. Чем выше частота, тем выше быстродействие.

Производительность процессора =

Количество исполняемых за такт инструкций * Тактовая частота

Типы процессоров

CISC-процессоры

ComplexInstructionSetComputer - вычисления со сложным набором команд. Процессорная архитектура, основанная на усложнённом наборе команд. Типичными представителями CISC является семейство микропроцессоров Intel x86 (хотя уже много лет эти процессоры являются CISC только по внешней системе команд).

RISC-процессоры

ReducedInstructionSetComputer - вычисления с сокращённым набором команд. Архитектура процессоров, построенная на основе сокращённого набора команд. Характеризуется наличием команд фиксированной длины, большого количества регистров, операций типа регистр-регистр, а также отсутствием косвенной адресации. Концепция RISC разработана Джоном Коком (JohnCocke) из IBMResearch, название придумано Дэвидом Паттерсоном (DavidPatterson).

Среди первых реализаций этой архитектуры были процессоры MIPS, PowerPC, SPARC, Alpha, PA-RISC. В мобильных устройствах широко используются ARM-процессоры.

MISC-процессоры

MinimumInstructionSetComputer - вычисления с минимальным набором команд. Дальнейшее развитие идей команды ЧакаМура, который полагает, что принцип простоты, изначальный для RISC-процессоров, слишком быстро отошёл на задний план. В пылу борьбы за максимальное быстродействие, RISC догнал и перегнал многие CISC процессоры по сложности. Архитектура MISC строится на стековой вычислительной модели с ограниченным числом команд (примерно 20-30 команд).

Многоядерные процессоры

Содержат несколько процессорных ядер в одном корпусе (на одном или нескольких кристаллах).

Процессоры, предназначенные для работы одной копии операционной системы на нескольких ядрах, представляют собой высокоинтегрированную реализацию мультипроцессорности.

Двухъядерность процессоров включает такие понятия, как наличие логических и физических ядер: например двухъядерный процессор Intel CoreDuo состоит из одного физического ядра, которое в свою очередь разделено на два логических. Процессор Intel Core 2 Quad состоит из двух физических ядер, каждое из которых в свою очередь разделено на два логических ядра, что существенно влияет на скорость его работы.

10 сентября2007 года были выпущены в продажу нативные (в виде одного кристалла) четырёхъядерные процессоры для серверов AMD Opteron, имевшие в процессе разработки кодовое название AMD OpteronBarcelona. 19 ноября 2007 года вышел в продажу четырёхъядерный процессор для домашних компьютеров AMD Phenom. Эти процессоры реализуют новую микроархитектуру K8L (K10).

сентября2006 года Intel продемонстрировала прототип 80-ядерного процессора. Предполагается, что массовое производство подобных процессоров станет возможно не раньше перехода на 32-нанометровый техпроцесс, а это в свою очередь ожидается к 2010 году.

октября2009 годаTilera анонсировала100-ядерный процессор широкого назначения серии TILE-Gx. Каждое процессорное ядро представляет собой отдельный процессор с кэшем 1, 2 и 3 уровней. Ядра, память и системная шина связаны посредством технологии MeshNetwork. Процессоры производятся по 40-нм нормам техпроцесса и работают на тактовой частоте 1,5 ГГц. Выпуск 100-ядерных процессоров назначен на начало 2011 года.

На данный момент массово доступны двух-, четырёх- и шестиядерные процессоры, частности Intel Core 2 Duo на 65-нм ядре Conroe (позднее на 45-нм ядре Wolfdale) и Athlon 64 X2 на базе микроархитектуры K8. В ноябре 2006 года вышел первый четырёхъядерный процессор Intel Core 2 Quad на ядре Kentsfield, представляющий собой сборку из двух кристаллов Conroe в одном корпусе. Потомком этого п роцессора стал Intel Core 2 Quad на ядре Yorkfield (45 нм), архитектурно схожем с Kentsfield но имеющем больший объём кэша и рабочие частоты.

Компания AMD пошла по собственному пути, изготовляя четырёхъядерные процессоры единым кристаллом (в отличие от Intel, первые четырехъядерные процессоры которой представляют собой фактически склейку двух двухъядерных кристаллов). Несмотря на всю прогрессивность подобного подхода первый «четырёхъядерник» фирмы, получивший название AMD Phenom X4, получился не слишком удачным. Его отставание от современных ему процессоров конкурента составляло от 5 до 30 и более процентов в зависимости от модели и конкретных задач.

К 1-2 кварталу 2009 года обе компании обновили свои линейки четырёхъядерных процессоров. Intel представила семейство Core i7, состоящее из трёх моделей, работающих на разных частотах. Основными изюминками данного процессора является использование трёхканального контроллера памяти (типа DDR-3) и технологии эмулирования восьми ядер (полезно для некоторых специфических задач). Кроме того, благодаря общей оптимизации архитектуры удалось значительно повысить производительность процессора во многих типах задач. Слабой стороной платформы, использующей Core i7, является её чрезмерная стоимость, так как для установки данн ого процессора необходима дорогая материнская плата на чипсете Intel X58 и трёхканальный набор памяти типа DDR3, также имеющий на данный момент высокую стоимость.

Компания AMD в свою очередь представила линейку процессоров Phenom II X4. При её разработке компания учла свои ошибки: был увеличен объём кэша (явно недостаточный у первого «Фенома»), а производство процессора было переведено на 45 нм техпроцесс, позволивший снизить тепловыделение и значительно повысить рабочие частоты. В целом, AMD Phenom II X4 по производительности стоит вровень с процессорами Intel предыдущего поколения (ядро Yorkfield) и весьма значительно отстаёт от Intel Core i7. Однако, принимая во внимание умеренную стоимость платформы на базе этого процессора, его рыночные перспективы выглядят куда более радужно, чем у предшественника.

Суть установки процессора

Для того чтобы правильно установить процессор, нужно понимать конфигурацию его установки, а она заключается в следующем. Процессор вставляется в сокет, который полностью повторяет форму расположения ножек на процессоре, затем процессор надёжно фиксируется в сокете, и сверху на него надевается радиатор с кулером.

Просмотрите расположение ножек процессора и канавок, которые имеются среди них, для того чтобы определить, какой стороной устанавливать процессор. Определить правильное положение процессора можно по треугольнику в углу, он должен быть в той же части где и треугольник на материнской плате. Процессоры Intel имеют специальные канавки в виде полукруга, благодаря которым вы также сможете определить его правильное размещение.

Самостоятельная работа

Выполнить сравнительную характеристику следующих процессоров. Представить все в виде таблицы для процессоров AMD и для процессоров Intel. Определить, какие процессоры относятся к бюджетному, среднему и мощному уровню.

Intel Celeron G1840

AMD A4-5300

Intel Core i7-6700K

AMD Athlon X4 860K

Intel Pentium G4500

AMD FX-9590

Intel Core i5-6500

AMD A4-6300

Intel Pentium G3900

AMD Athlon X4 840

Intel Core i7-6950X

AMD A8-7600

Intel Core i5-4590

Intel Core i7-4790K

Intel Celeron G1820

Как правильно читать название процессоров:

Определить:

к какому семейству относится процессор;

поддерживаемый тип Socket-а (расположение ножек сокета);

количество ядер;

объем кэш памяти 3 уровня;

частоту процессора;

цена

уровень обозначать следующим образом:

- бюджетный;

- средний; М - мощный.

Пример заполнения таблицы Intel

CPU

Pentium G3260

Характиристики

Семейство

Pentium

Тип Socket

Socket 1150 (ножки на Socket)

Кол-во ядер

2

Объем кэш 3 уровня

3Мб

Частота

3300МГц

Уровень

Б

Цена

1513 грн.

Пример заполнения таблицы AMD

CPU

Richland A6-6400K

Характиристики

Семейство

Pentium

Тип Socket

Socket FM2 (ножки на CPU)

Кол-во ядер

2

Объем кэш 3 уровня

2 уровень - 1Мб

Частота

3900МГц

Уровень

Б

Цена

1197 грн.

Размещено на Allbest.ru


Подобные документы

  • Принцип работы процессора, способы его охлаждения, кодовые названия. Шины процессора, разрядность и кэш–память. Технологии расширения и поток команд процессора. Процессорные вентиляторы и их характеристика. Алгоритм и способы разгона процессора.

    реферат [38,0 K], добавлен 21.02.2009

  • Понятия и принцип работы процессора. Устройство центрального процессора. Типы архитектур микропроцессоров. Однокристальные микроконтроллеры. Секционные микропроцессоры. Процессоры цифровой обработки сигналов. Эволюция развития микропроцессоров Intel.

    реферат [158,8 K], добавлен 25.06.2015

  • Структура процессора Pentium, суперскалярность, основные особенности архитектуры. Организация конвейера команд, правила объединения. Дополнительные режимы работы процессора. Источники аппаратных прерываний. Формат ММХ команды. Процессор Pentium 4, схемы.

    лекция [4,0 M], добавлен 14.12.2013

  • Рассмотрение принципа работы процессора и его практической реализации с использованием языка описания аппаратуры Verilog. Проектирование системы команд процессора. Выбор размера массива постоянной памяти. Подключение счетчика инструкций и файла регистра.

    курсовая работа [1,2 M], добавлен 26.05.2022

  • Рост производительности и снижение потребляемой мощности процессора. Упрощенная-схема процессора BF535. Поддержка моделей памяти. Стандарты коммуникационных протоколов. Системные регистры процессора. Регистровый файл данных. Шины связи регистрового файла.

    презентация [6,3 M], добавлен 14.12.2013

  • Принцип работы процессора (одномагистральная структура). Временные диаграммы, описывающие выполнение микроопераций для каждой команды. Структурная схема управляющего автомата на основе памяти с одним полем адреса. Описание процессора на языке Active VHDL.

    курсовая работа [621,0 K], добавлен 24.09.2010

  • Принцип работы ядра процессора, типы архитектур ядер операционных систем. Сокет(Socket), кэш-память, контроллер ОЗУ, северный мост. Внутренняя архитектура процессоров Intel и AMD: расшифровка названий, технологии процессоров, сравнение производительности.

    реферат [214,9 K], добавлен 05.05.2014

  • Назначение, функции и характеристики процессора. Совокупность компьютерных данных из 8 бит. Назначение операционной системы ЭВМ. Основной тип файла Excel. Технология создания Поля со списком. Типы структур баз данных. Понятие и виды сетевых протоколов.

    контрольная работа [2,7 M], добавлен 15.09.2015

  • История появления и развития первых процессоров для компьютеров. Общая структура центрального процессора. Устройство блока интерфейса. Основные характеристики процессора. Кеш-память разных уровней. Разрядность и количество ядер. Частота и системная шина.

    презентация [1,4 M], добавлен 11.04.2019

  • Разработка программы на языке Ассемблер для определения типа центрального процессора и его производительности. Основные этапы определения любого существующего Intel-совместимого процессора. Тактовая частота процессора, алгоритм и листинг программы.

    курсовая работа [47,6 K], добавлен 26.07.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.