Принципы компьютерного моделирования

Анализ сущности компьютерного математического моделирования. Характеристика особенностей компьютерного имитационного моделирования. Анализ использования компьютерного моделирования для исследования сложных систем с дискретным характером функционирования.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 22.03.2020
Размер файла 326,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ТЕЛЕКОММУНИКАЦИЙ ИМ. ПРОФ. М.А. БОНЧ-БРУЕВИЧА»

(СПбГУТ)

СМОЛЕНСКИЙ КОЛЛЕДЖ ТЕЛЕКОММУНИКАЦИЙ (ФИЛИАЛ) СПбГУТ (СКТ (ф) СПбГУТ)

Реферат

На тему: «Принципы компьютерного моделирования»

Выполнила:

Студентка гр. СП9417

Ермакова Е.Э.

Проверил:

Преподаватель

Строде Т.Н.

Смоленск, 2019 г.

ВВЕДЕНИЕ

моделирование компьютерный математический

«Ошибаться человеку свойственно, но окончательно всё запутать может только компьютер»

(Пятый закон ненадежности)

Моделирование является неотъемлемой стороной человеческой деятельности - от живописи до математического моделирования сложных систем и имеет многовековую историю. В целом моделирование - это общенаучный метод изучения свойств объектов и процессов по их моделям, используемый в целях познания, исследования, проектирования, принятия решений. В настоящее время методы компьютерного моделирования прочно вошли в практику решения широкого круга теоретических проблем и прикладных технических задач в различных сферах практической деятельности.

Традиционно под моделированием на ЭВМ понималось лишь имитационное моделирование. Можно, однако, увидеть, что и при других видах моделирования компьютер может быть весьма полезен. Например, при математическом моделировании выполнение одного из основных этапов -- построение математических моделей по экспериментальным данным -- в настоящее время просто немыслимо без компьютера. В последние годы, благодаря развитию графического интерфейса и графических пакетов, широкое развитие получило компьютерное структурно-функциональное моделирование, о котором подробно поговорим ниже. Положено начало привлечения компьютера даже к концептуальному моделированию, где он используется, например, при построении систем искусственного интеллекта.

Таким образом, мы видим, что понятие «компьютерное моделирование» значительно шире традиционного понятия «моделирование на ЭВМ» и нуждается в уточнении, учитывающем сегодняшние реалии.

Начнем с термина «компьютерная модель». В настоящее время под компьютерной моделью чаще всего понимают:

· условный образ объекта или некоторой системы объектов (или процессов), описанный с помощью взаимосвязанных компьютерных таблиц, блок-схем, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекста и т. д. и отображающий структуру элементов объекта и взаимосвязи между ними. Компьютерные модели такого вида мы будем называть структурно-функциональными;

· программу или программный комплекс, позволяющий с помощью последовательности вычислений и графического отображения их результатов воспроизводить (имитировать) процессы функционирования объекта, системы объектов при условии воздействия на объект различных, как правило, случайных, факторов. Такие модели мы будем далее называть имитационными.

Компьютерное моделирование -- метод решения задачи анализа или синтеза сложной системы на основе использования ее компьютерной модели. Суть компьютерного моделирования заключена в получении количественных и качественных результатов по имеющейся модели. Качественные выводы, получаемые по результатам анализа, позволяют обнаружить неизвестные ранее свойства сложной системы: ее структуру, динамику развития, устойчивость, целостность и др. Количественные выводы в основном носят характер прогноза некоторых будущих или объяснения прошлых значений переменных, характеризирующих систему. Компьютерное моделирование состоит из семи этапов:

1) определение цели моделирования;

2) построение концептуальной модели (содержательный);

3) формализация модели;

4) программная реализация модели;

5) клонирование модельных экспериментов;

6) реализация плана эксперимента;

7) анализ и интерпретация результатов моделирования.

 Преимущества компьютерного моделирования перед натурным моделированием:

o экономичность (сбережение ресурсов)4

o возможность моделирования редких экстремальных ситуаций;

o возможность моделирования режимов, связанных с разрушением исследуемого объекта;

o возможность управления масштабом модельного времени;

o возможность многофакторного анализа;

o эффективность прогнозирования и поиска закономерностей;

o универсальность технического и программного обеспечения.

Предметом компьютерного моделирования могут быть: экономическая деятельность фирмы или банка, промышленное предприятие, информационно-вычислительная сеть, технологический процесс, любой реальный объект или процесс, например процесс инфляции, и вообще - любая сложная система. Цели компьютерного моделирования могут быть различными, однако наиболее часто моделирование является, как уже отмечалось ранее, центральной процедурой системного анализа, причем под системным анализом мы далее понимаем совокупность методологических средств, используемых для подготовки и принятия решений экономического, организационного, социального или технического характера.

Компьютерная модель сложной системы должна, по возможности, отображать все основные факторы и взаимосвязи, характеризующие реальные ситуации, критерии и ограничения. Модель должна быть достаточно универсальной, чтобы описывать близкие по назначению объекты, и в то же время достаточно простой, чтобы позволить выполнить необходимые исследования с разумными затратами.

Все это говорит о том, что моделирование систем, рассматриваемое в целом, представляет собой скорее искусство, чем сформировавшуюся науку с самостоятельным набором средств отображения явлений и процессов реального мира. Поэтому исключительно сложными, а по нашему мнению, и невозможными, являются попытки классификации задач компьютерного моделирования или создания достаточно универсальных инструментальных средств компьютерного моделирования произвольных объектов. Однако если преднамеренно сузить класс рассматриваемых объектов, ограничившись, например, задачами компьютерного моделирования при системном анализе объектов экономико-организационного управления, то возможно отобрать ряд достаточно универсальных подходов и программных средств.

ОСНОВНАЯ ЧАСТЬ

1. Компьютерное математическое моделирование

Математическое моделирование как таковое отнюдь не всегда требует компьютерной поддержки. Каждый специалист, профессионально занимающийся математическим моделированием, делает все возможное для аналитического исследования модели. Аналитические решения (т. е. представленные формулами, выражающими результаты исследования через исходные данные) обычно удобнее и информативнее численных. Однако, возможности аналитических методов решения сложных математических задач очень ограничены и, как правило, эти методы гораздо сложнее численных. Рассмотрим процесс компьютерного математического моделирования, включающий численный эксперимент с моделью, для этого обратимся к схеме процесса компьютерного математического моделирования (см. рис.1).

рис.1

Первый этап - определение целей моделирования. Основные из них таковы:

1. Понимание

Модель в этой ситуации нужна для того, чтобы понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия с окружающим миром.

2. Управление

Модель нужна для того, чтобы научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях;

З. Прогнозирование

Модель используется для того, чтобы прогнозировать прямые и косвенные последствия воздействия на объект заданными способами.

Какой режим полета самолета выбрать для того, чтобы полет был вполне безопасным и экономически наиболее выгодным? Как составить график выполнения сотен видов работ на строительстве большого объекта, чтобы оно закончилось в максимально короткий срок? Множество таких проблем систематически возникает перед экономистами, конструкторами, учеными.

Составим список величин, от которых зависит поведение объекта или ход процесса, а также тех величин, которые желательно получить в результате моделирования. Обозначим первые из них (входные) через x1, x2,..., хn,,; вторые (выходные) через y1, y2,…,yn. Символически поведение объекта или процесса можно представить в виде

yj = Fj(x1; x2;...; xn), j = 1; 2;...; n

где Fj -- те действия, которые следует произвести над входными параметрами, чтобы получить результаты. Хотя запись  напоминает обозначение функции, мы здесь используем ее в более широком смысле. Лишь в простейших ситуациях здесь F есть функция в обычном смысле; чаще всего она выражает лишь наличие некоторой связи между входными и выходными параметрами модели.

Входные параметры хi могут быть известны «точно», т.е. поддаваться (по крайней мере, в принципе) измерению однозначно и с любой степенью точности -- тогда они являются детерминированными величинами. Так, в классической механике, сколь сложной ни была бы моделируемая система, входные параметры детерминированы и, соответственно, детерминирован процесс эволюции такой системы. Однако в природе и обществе гораздо чаще встречаются процессы иного рода, когда значения входных параметров известны лишь с определенной степенью вероятности, т.е. эти параметры являются вероятностными (стохастическими), и, соответственно, случайным является процесс эволюции системы.

Случайный - не значит непредсказуемый. Просто в этой ситуации характер исследования и задаваемых вопросов резко меняется - они приобретают вид «С какой вероятностью...?», «С каким математическим ожиданием...?» и т.п. Примеров случайных процессов не счесть как в науке, так и в обыденной жизни (силы, действующие на летящий самолет в ветреную погоду; переход улицы при большом потоке транспорта и т.д.).

Для стохастической модели выходные параметры могут быть как величинами вероятностными, так и однозначно определяемыми. Например, на перекрестке улиц можно ожидать зеленого сигнала светофора и полминуты, и две минуты (с разной вероятностью), но среднее время ожидания есть величина вполне определенная, и именно она может быть объектом моделирования.

Важнейшим этапом моделирования является разделение входных параметров по степени важности влияния их изменений на выходные. Такой процесс называется ранжированием (разделением по рангам). Чаще всего невозможно, да и не нужно учитывать все факторы, которые могут повлиять на значения интересующих нас величин уj. От того, насколько умело выделены важнейшие факторы, зависит успех моделирования, быстрота и эффективность достижения цели. Выделить наиболее значимые факторы и отсеять менее важные может лишь специалист в той предметной области, к которой относится модель. Так, опытный учитель знает, что на успех контрольной работы влияет степень знания предмета и психологический настрой класса; однако, влияют и другие факторы -- например, каким уроком по счету идет контрольная, какова в этот момент погода и т.д. -- фактически проведено ранжирование.

Отбрасывание менее значимых факторов огрубляет объект моделирования и способствует пониманию его главных свойств и закономерностей. Умело ранжированная модель должна быть адекватна исходному объекту или процессу в отношении целей моделирования. Обычно определить, адекватна ли модель можно только в процессе экспериментов с ней, анализа результатов первоначального моделирования.

Следующий этап -- поиск математического описания. На этом этапе необходимо перейти от абстрактной формулировки модели к формулировке, имеющей конкретное математическое наполнение. В этот момент модель предстает перед нами в виде уравнения, системы уравнений, системы неравенств, дифференциального уравнения или системы таких уравнений и т.д.

Когда математическая модель сформулирована, нужно выбрать метод ее исследования. Как правило, для решения одной и той же задачи есть несколько конкретных методов, различающихся эффективностью, устойчивостью и т.д. От верного выбора метода часто зависит успех всего процесса.

После разработки алгоритма и составления программы для ЭВМ необходимо решить с ее помощью простейшую тестовую задачу (желательно, с заранее известным ответом) с целью устранения грубых ошибок. Это лишь начало процедуры тестирования, которую трудно описать формально исчерпывающим образом. По существу, тестирование может продолжаться долго и закончиться тогда, когда пользователь по своим профессиональным признакам сочтет программу верной.

Затем следует собственно численный эксперимент, и выясняется, соответствует ли модель реальному объекту (процессу). Модель адекватна реальному процессу, если некоторые характеристики процесса, полученные на ЭВМ, совпадают с экспериментальными с заданной степенью точности. В случае несоответствия модели реальному процессу возвращаются к одному из предыдущих этапов.

2. Компьютерное имитационное моделирование.

Статистическое моделирование - метод исследования сложных систем, основанный на описании процессов функционирования отдельных элементов в их взаимосвязи с целью получения множества частных результатов, подлежащих обработке методами математической статистики для получения конечных результатов. Имитационная модель - универсальное средство исследования сложных систем, представляющее собой логико-алгоритмическое описание поведения отдельных элементов системы и правил их взаимодействия, отображающих последовательность событий, возникающих в моделируемой системе. Если статистическое моделирование выполняется с использованием имитационной модели, то такое моделирование называется имитационным.

Наиболее широкое применение имитационное моделирование получило при исследовании сложных систем с дискретным характером функционирования, в том числе моделей массового обслуживания. Для описания процессов функционирования таких систем обычно используются временные диаграммы. Временная диаграмма - графическое представление последовательности событий, происходящих в системе. Для построения временных диаграмм необходимо достаточно четко представлять взаимосвязь событий внутри системы. Степень детализации при составлении диаграмм зависит от свойств моделируемой системы и от целей моделирования. Поскольку функционирование любой системы достаточно полно отображается в виде временной диаграммы, имитационное моделирование можно рассматривать как процесс реализации диаграммы функционирования исследуемой системы на основе сведений о характере функционирования отдельных элементов и их взаимосвязи. Имитационное моделирование обычно проводится на ЭВМ в соответствии с программой, реализующей заданное конкретное логикоалгоритмическое описание. При этом несколько часов, недель или лет работы исследуемой системы могут быть промоделированы на ЭВМ за несколько минут. В большинстве случаев модель является не точным аналогом системы, а скорее её символическим отображением. Однако такая модель позволяет производить измерения, которые невозможно произвести каким-либо другим способом. Имитационное моделирование обеспечивает возможность испытания, оценки и проведения экспериментов с исследуемой системой без каких-либо непосредственных воздействий на нее. Первым шагом при анализе любой конкретной системы является выделение элементов, и формулирование логических правил, управляющих взаимодействием этих элементов. Полученное в результате этого описание называется моделью системы. Модель обычно включает в себя те аспекты системы, которые представляют интерес или нуждаются в исследовании. Поскольку целью построения любой модели является исследование характеристик моделируемой системы, в имитационную модель должны быть включены средства сбора и обработки статистической информации по всем интересующим характеристикам, основанные на методах математической статистики.

Рассмотрим принципы имитационного моделирования на примере простейшей базовой модели в виде одноканальной системы массового обслуживания с однородным потоком заявок (рис.2), в которую поступает случайный поток заявок с интервалами между соседними заявками, распределёнными по закону A(ф) , а длительность обслуживания заявок в приборе распределена по закону B(ф) . Процесс функционирования такой системы может быть представлен в виде временных диаграмм, на основе которых могут быть измерены и рассчитаны характеристики обслуживания заявок. Поскольку процессы поступления и обслуживания заявок в системе носят случайный характер, то для построения диаграмм необходимо иметь генераторы случайных чисел.

рис.2

Таким образом, имитационная модель представляет собой алгоритм реализации временной диаграммы функционирования исследуемой системы. Наличие встроенных в большинство алгоритмических языков генераторов случайных чисел значительно упрощает процесс реализации имитационной модели на ЭВМ. Однако при этом остаётся ряд проблем, требующих своего решения. Одна из них заключается в принципе реализации временной диаграммы и, связанной с ней, проблемой организации службы времени в имитационной модели. В простейшем случае временная диаграмма может быть реализована следующим образом: сначала формируются моменты поступления всех заявок в систему, а затем для каждой заявки определяются длительности обслуживания в приборе и формируются моменты завершения обслуживания (выхода заявок из системы). Очевидно, что такой подход неприемлем, поскольку даже для нашей очень простой системы придётся хранить в памяти ЭВМ одновременно миллионы значений моментов поступления и завершения обслуживания заявок, а также других переменных, причём с увеличением количества классов заявок и количества обслуживающих приборов это число увеличится многократно.

Системная динамика - парадигма моделирования, где для исследуемой системы  строятся графические диаграммы  причинных связей и глобальных влияний  одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По сути, такой вид моделирования  более всех других парадигм помогает понять суть происходящего выявления  причинно-следственных связей между  объектами и явлениями. 

Агентное моделирование - метод имитационного моделирования, исследующий поведение децентрализованных агентов и то, как такое поведение определяет поведение всей системы в целом . Под агентом в агентном моделировании понимается элемент модели, который может иметь поведение, память (историю), контакты и т.д. и может моделировать людей, компании, проекты, автомобили, города, животных, корабли, товары и т.д.

Дискретно-событийное моделирование - подход к моделированию, предлагающий абстрагироваться от непрерывной  природы событий и рассматривать  только основные события моделируемой системы, такие как «ожидание», «обработка заказа», «движение с грузом», «разгрузка»  и другие. Дискретно-событийное моделирование  наиболее развито и имеет огромную сферу приложений - от логистики  и систем массового обслуживания до транспортных и производственных процессов.

ЗАКЛЮЧЕНИЕ

В 1870 г. английское Адмиралтейство спустило на воду новый броненосец "Кэптен". Корабль вышел в море и перевернулся. Погиб корабль и все находящиеся на нем люди. Это было совершенно неожиданно для всех, кроме английского ученого-кораблестроителя В. Рида, который предварительно провел исследования на модели броненосца и установил, что корабль опрокинется даже при небольшом волнении. Но ученому, проделывающему, как казалось, несерьезные опыты с "игрушкой", не поверили лорды из Адмиралтейства. И случилось непоправимое...

Модели и моделирование используются человечеством давно. С помощью моделей и модельных отношений развились разговорные языки, письменность, графика. Наскальные изображения наших предков, затем картины и книги - это модельные, информационные формы передачи знаний об окружающем мире последующим поколениям. Модели применяются при изучении сложных явлений, процессов, конструировании новых сооружений. Хорошо построенная модель, как правило, доступнее для исследования, нежели реальный объект. Более того, некоторые объекты вообще не могут быть изучены непосредственным образом: недопустимы, например, эксперименты с экономикой страны в познавательных целях; принципиально неосуществимы эксперименты с прошлым или, скажем, с планетами Солнечной системы и т. п.

Технология моделирования требует от исследователя умения корректно формулировать проблемы и задачи, прогнозировать результаты, проводить разумные оценки, выделять главные и второстепенные факторы для построения моделей, находить аналогии и выражать их на языке математики.

Размещено на Allbest.ru


Подобные документы

  • Компьютерное моделирование - вид технологии. Анализ электрических процессов в цепях второго порядка с внешним воздействием с применением системы компьютерного моделирования. Численные методы аппроксимации и интерполяции и их реализация в Mathcad и Matlab.

    курсовая работа [1,1 M], добавлен 21.12.2013

  • Обзор средств компьютерного имитационного моделирования по созданию веб-приложения для визуализации имитационных моделей. Система имитационного моделирования AnyLogic, Arena, SimuLab. Серверная, клиентская часть. Модель работы отдела банка и участка цеха.

    дипломная работа [3,3 M], добавлен 25.05.2015

  • Значение компьютерного моделирования, прогнозирования событий, связанных с объектом моделирования. Совокупность взаимосвязанных элементов, важных для целей моделирования. Особенности моделирования, знакомство со средой программирования Турбо Паскаль.

    курсовая работа [232,6 K], добавлен 17.05.2011

  • Понятие компьютерной и информационной модели. Задачи компьютерного моделирования. Дедуктивный и индуктивный принципы построения моделей, технология их построения. Этапы разработки и исследования моделей на компьютере. Метод имитационного моделирования.

    реферат [29,6 K], добавлен 23.03.2010

  • Теоретические основы моделирования систем в среде имитационного моделирования AnyLogic. Средства описания поведения объектов. Анимация поведения модели, пользовательский интерфейс. Модель системы обработки информации в среде компьютерного моделирования.

    курсовая работа [1,5 M], добавлен 15.05.2014

  • Актуальность и практическая значимость программных систем компьютерного клуба. Анализ предметной области. Диаграмма классов, физическая модель системы. Разработка визуального проекта ИС, с использованием языка UML2.0 и среды моделирования Microsoft Visio.

    курсовая работа [1,7 M], добавлен 21.06.2014

  • Понятие компьютерной модели и преимущества компьютерного моделирования. Процесс построения имитационной модели. История создания системы GPSS World. Анализ задачи по прохождению турникета на стадион посредством языка имитационного моделирования GPSS.

    курсовая работа [291,3 K], добавлен 11.01.2012

  • Оптимальное время для обслуживания пользователей как основная цель работы компьютерного зала библиотеки. Построение модели деятельности подписного отдела с помощью средства имитационного моделирования AnyLogic. Описание процессов и построение сценария.

    курсовая работа [1,9 M], добавлен 19.06.2015

  • Сущность принципов информационной достаточности, осуществимости, множественности моделей, параметризации и агрегирования. Построение концептуальной модели. Сравнение размеров программного кода. Особенности технологии компьютерного моделирования.

    презентация [49,3 K], добавлен 16.10.2013

  • Основы систематизации языков имитационного моделирования, моделирование систем и языки программирования. Особенности использования алгоритмических языков, подходы к их разработке. Анализ характеристик и эффективности языков имитационного моделирования.

    курсовая работа [1,4 M], добавлен 15.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.