Математический анализ российского алгоритма шифрования в сравнении с аналогом – победителем конкурса AES
Особенности и разработка интеллектуальной обучающей системы (ИОС) алгоритмов шифрования. Анализ "лавинного эффекта", то есть определение зависимости каждого бита шифртекста от соответствующего бита открытого текста с учетом работы исходного ключа.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | русский |
Дата добавления | 12.04.2019 |
Размер файла | 35,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Волгоградский Государственный Аграрный университет Волгоград, Россия
Математический анализ российского алгоритма шифрования в сравнении с аналогом - победителем конкурса AES
Меликов А.В., Яковлев С. Л.
Разработанная интеллектуальная обучающая система (ИОС) алгоритмов шифрования Яковлев, С.Л. Разработка интеллектуальной обучающей системы современных алгоритмов шифрования / Магистерская диссертация под науч. рук. доц. А.В. Меликова. - Волгоград, Издательство ВолГАУ, 2015. - 101 с. позволяет проводить статистические исследования, примером которых является анализ «лавинного эффекта», т.е. определение зависимости каждого бита шифртекста от соответствующего бита открытого текста с учетом работы исходного ключа.
Математический анализ предлагается начать с алгоритма шифрования «Rijndael» - победителя конкурса AES [1].Предположим, что во входном 32-битовом значении изменен 1 бит. Первая операция функции шифрования - сложение по модулю 232, т.е. с переносом из младших разрядов в старшие. Теоретически, изменение самого младшего бита операнда может привести к изменению всех битов суммы. При условии равновероятного и независимого распределения битов операндов на множестве {0,1} вероятность события «влияние одного бита операнда распространяется влево ровно на битов результата», равна 2-n. Это означает, что если изменить значение 1 бита операнда на противоположное, то помимо соответствующего ему бита результата, который инвертируется в любом случае, ровно битов результата, находящихся левее инвертированного, также поменяют значение на противоположное с указанной выше вероятностью. Получаем, что при сложении двух чисел по модулю 232 практическое значение имеет только влияние бита операнда на не более, чем 4 старших бита результата.
Теперь рассмотрим диффузионные характеристики алгоритма «Rijndael». Первая операция раунда шифрования алгоритма - побитовое суммирование с ключом по модулю 2 - не приводит к выходу изменения за пределы 1 бита. Следующая операция - замена по таблице - распространяет изменение в 1 бите на весь байт. Следующий за ней построчный байтовый сдвиг не изменяет ничего. Наконец, завершающая операция раунда - перемешивание байтов в столбцах матрицы - приводит к диффузии изменения на весь столбец. Таким образом, за 1 раунд шифрования изменение в 1 бите входных данных окажет влияние на 1 столбец матрицы данных. На следующем раунде шифрования эти байты в ходе операции построчного байтового сдвига будут «разведены» по разным столбцам, и в результате последующей операции перемешивания байтов в столбцах исходное изменение распространится на 4 столбца. Диаграмма диффузии в алгоритме-финалисте конкурсаAES приведена на рисунке 1.
Таким образом, при шифровании исходного текста изменение в одном бите входных данных распространяется на весь блок ровно за два раунда. В результате за 10-14 раундов алгоритма шифрования «Rijndael» данные успевают полностью перемешаться пять-семь раз.
интеллектуальный шифрование лавинный бита
Рисунок 1 - Диффузия изменения в исходных данных в процессе шифрования «Rijndael»
Сформулируем основные достоинства и недостатки отечественного стандарт шифрования «ГОСТ Р 28147-89» ГОСТ 28147-89. Группа П85. Государственный стандарт союза ССCР. Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования. ОКП 40 4000.Дата введения 1990-07-01. . Исходя из рассуждений Б. Шнайера [2], невосприимчивость алгоритма «ГОСТ Р 28147-89» к дифференциальному и линейному криптоанализу плюс большое количество раундов означают, что российский стандарт шифрования является достаточно надежным. К тому же, лобовое вскрытие данного алгоритма абсолютно невозможно из-за 256-битного ключа, а также возможности использования секретных значений узла замены.
При сравнении производительности алгоритмов «ГОСТ Р 28147-89» и «Rijndael» на 32-битных платформах, российский стандарт шифрования медленнее криптостандарта США, но это разница составляет всего 10-20 % [3]. Преимущество алгоритма AES невелико, потому что отечественный криптостандарт был принят на 10 лет раньше от начала конкурса AES.
Однако алгоритм «ГОСТ Р 28147-89» имеет, как минимум, два существенных недостатка:
? основные операции выполняются над 32-битными «полублоками». Алгоритм проигрывает в скорости в 4 раза байт-ориентированному «Rijndael» на 8-битных платформах;
? в тексте стандарта отсутствуют четкие критерии выбора узлов замены. Достаточно часто высказываются опасения, что существуют слабые узлы замены.
Рассмотрим устойчивость обоих алгоритмов к известным видам криптоанализа. Наиболее универсальными и эффективными для алгоритмов широкого класса являются дифференциальный и линейный виды криптоанализа. Дать оценку устойчивости алгоритма «ГОСТ Р 28147-89» к конкретным видам криптоанализа невозможно без спецификации узлов замен, так как качество этого шифра зависит от качества использованных узлов. Но исследования близких по архитектуре шифров с заданными таблицами подстановок показали, что криптоанализ шифра с 16 раундами в принципе осуществим, но требует очень большого числа исходных данных, а при 20-24 раундах становится теоретически бесполезным. Отечественный стандарт шифрования предусматривает 32 раунда шифрования, и этого количества хватает с запасом, чтобы успешно противостоять указанным видам криптоанализа.
По оценкам разработчиков шифра AES, уже на 4 раундах шифрования этот алгоритм приобретает достаточную устойчивость. Теоретической границей, за которой линейный и дифференциальный виды криптоанализа теряют смысл, является рубеж в 6 раундов. Согласно спецификации, в шифре предусмотрено 10-14 раундов. Следовательно, шифр AES также устойчив к указанным видам криптоанализа с определенным запасом. Таким образом, сравниваемые шифры обладают достаточной стойкостью к известным видам криптоанализа. В печати отсутствуют какие-либо сведения об успешных случаях вскрытия указанных шифров, а также описания процедур, которые теоретически позволили бы дешифровать сообщение с меньшими вычислительными затратами, чем полный перебор по всему ключевому пространству.
Рассмотренные алгоритмы обладают сопоставимыми характеристиками быстродействия при реализации на 32-битовых платформах. На 8-битовых платформах картина, вероятно, сходная. Что касается аппаратной реализации, то в отличие от «ГОСТ Р 28147-89», алгоритм шифрования AES позволяет достичь высокой степени параллелизма при выполнении шифрования, оперирует блоками меньшего размера и содержит меньшее число раундов, в силу чего его аппаратное воплощение может оказаться существенно более быстрым. Преимущество длины наибольшего пути в сетевом представлении примерно четырехкратное.
Проведенное выше сопоставление параметров российского стандарта шифрования и алгоритма шифрования AES, принятого за стандарт шифрования США, показало, что, несмотря на различие в архитектурных принципах этих шифров, их основные рабочие параметры сопоставимы. Исключением является тот факт, что «Rijndael»имеет значительное преимущество в быстродействии перед «ГОСТ Р 28147-89» при аппаратной реализации на базе одной и той же технологии. Очевидным шагом в оптимизации отечественного алгоритма шифрования, считаем, является переход байтовым заменам, что должно повысить стойкость алгоритма к известным видам криптоанализа.
Библиографический список
1. Официальная страница NIST США [Электронный ресурс]. - 2015. - Режим доступа: http://csrc.nist.gov/archive/aes/index.html.
2. Шнайер, Б. Прикладная криптография. Протоколы, алгоритмы, исходные тексты на языке Си. Пер. с англ. / Б. Шнайер. - М.: Издательство «Триумф», 2012. - 816 с.
3. Сонг Й. Ян. Криптоанализ RSA / Пер. с англ. Ю. Айдарова. - М.: Издательство «Институт компьютерных исследований», 2011. - 312 с.
Размещено на Allbest.ru
Подобные документы
Симметричные и асиметричные методы шифрования. Шифрование с помощью датчика псевдослучайных чисел. Алгоритм шифрования DES. Российский стандарт цифровой подписи. Описание шифрования исходного сообщения асимметричным методом с открытым ключом RSA.
курсовая работа [101,1 K], добавлен 09.03.2009Разработка криптографического алгоритма программы ручного шифра по таблице Виженера. Разработка программы, выполняющей шифрование и расшифрование. Особенности использования в качестве ключа самого открытого текста. Алгоритмы решения "обратных" задач.
курсовая работа [45,0 K], добавлен 13.11.2009Реализация алгоритма DES и режимов шифрования для любой длины сообщения и любой длины ключа. Шифрование сообщений различной длины и ключа с замериванием времени и скорости шифрования. Реализация алгоритма RSA. Сохранение зашифрованного файла на диск.
курсовая работа [398,4 K], добавлен 26.01.2010Симметричные криптосистемы; алгоритмы шифрования и дешифрования данных, их применение в компьютерной технике в системах защиты конфиденциальной и коммерческой информации. Основные режимы работы алгоритма DES, разработка программной реализации ключа.
курсовая работа [129,6 K], добавлен 17.02.2011Особенности шифрования данных, предназначение шифрования. Понятие криптографии как науки, основные задачи. Анализ метода гаммирования, подстановки и метода перестановки. Симметрические методы шифрования с закрытым ключом: достоинства и недостатки.
курсовая работа [564,3 K], добавлен 09.05.2012История криптографии. Сравнение алгоритмов шифрования, применение в операционной системе. Анализ продуктов в области пользовательского шифрования. Включение и отключение шифрования на эллиптических кривых. Использование хеш-функции. Электронная подпись.
курсовая работа [492,6 K], добавлен 18.09.2016История появления симметричных алгоритмов шифрования. Роль симметричного ключа в обеспечении степени секретности сообщения. Диффузия и конфузия как способы преобразования бит данных. Алгоритмы шифрования DES и IDEA, их основные достоинства и недостатки.
лабораторная работа [335,9 K], добавлен 18.03.2013История появления и развития шифрования текста. Проблема шифрования и дешифрования текстовых сообщений в современности. Создание программы для зашифровки и расшифровки вводимого текста пятью методами: Атбаш, Цезаря, Полибия, Гронсфельда и Винжера.
курсовая работа [923,6 K], добавлен 26.12.2011Сравнение производительности программных реализаций алгоритмов шифрования с оптимизациями под языки С и Java. История разработки, сущность, принципы шифрования и успехи в криптоанализе таких алгоритмов шифрования как AES, RC4, RC5, RC6, Twofish и Mars.
реферат [1,3 M], добавлен 13.11.2009Автоматизация процесса шифрования на базе современных информационных технологий. Криптографические средства защиты. Управление криптографическими ключами. Сравнение симметричных и асимметричных алгоритмов шифрования. Программы шифрования информации.
курсовая работа [795,7 K], добавлен 02.12.2014