Протоколы машинизации их метрики
Назначение и функции маршрутизаторов в компьютерных сетях. Характеристика протоколов машинизации их метрики: дистанционно-векторного RIP, состояния связей OSPF. Модели сети и стандарты. Принципы формирования таблиц маршрутизации на примере составной сети.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 01.01.2019 |
Размер файла | 1,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Назначение и функции маршрутизаторов
1.1 Модели сети и стандарты
2. Протоколы машинизации их метрики
2.1 Дистанционно-векторный протокол RIP
2.2 Протокол состояния связей OSPF
2.3 Организация таблиц маршрутизации
3. Практическая часть
Заключение
Список используемых источников
Приложение
Введение
Архитектура сети ЭВМ определяет принципы построения и функционирования аппаратного и программного обеспечения элементов сети.
Сеть представляет собой совокупность компьютеров, объединенных средствами передачи данных. Средства передачи данных в общем случае могут состоять из следующих элементов: связных компьютеров, каналов связи (спутниковых, телефонных, цифровых, волоконно-оптических, радио- и других), коммутирующей аппаратуры, ретрансляторов, различного рода преобразователей сигналов и других элементов и устройств.
Современные сети можно классифицировать по различным признакам: по удаленности компьютеров, топологии, назначению, перечню предоставляемых услуг, принципам управления (централизованные и децентрализованные), методам коммутации (без коммутации, телефонная коммутация, коммутация цепей, сообщений, пакетов и дейтаграмм и т. д.), видам среды передачи и т. д.
Сети условно разделяют на локальные и глобальные в зависимости от удаленности компьютеров.
Произвольная глобальная сеть может включать другие глобальные сети, локальные сети, а также отдельно подключаемые к ней компьютеры (удаленные компьютеры) или отдельно подключаемые устройства ввода-вывода. Глобальные сети бывают четырех основных видов: городские, региональные, национальные и транснациональные. В качестве устройств ввода-вывода могут использоваться, например, печатающие и копирующие устройства, кассовые и банковские аппараты, дисплеи (терминалы) и факсы.
1. Назначение и функции маршрутизаторов
Если бы существовала среда с безграничной пропускной способностью, способная обеспечить непосредственную связь всех компьютеров друг с другом в одной сети, никаких маршрутизаторов бы не понадобилось. В реальности же мы зачастую не можем обеспечить такую связь даже в пределах одного здания. Физические пределы, соображения надежности и безопасности заставляют дробить сети на подсети. Маршрутизаторы же выступают в роли некоего клея, их объединяющего.
Что это такое- маршрутизатор? Это компьютер, имеющий несколько сетевых интерфейсов, причем разные интерфейсы принадлежат разным сетям. (Всякого рода аппаратные маршрутизаторы, наподобие тех, что выпускают Bay Networks и Cisco, тоже являются компьютерами, пусть и специализированными.) Задача маршрутизатора- переправлять пакеты данных между интерфейсами. Сетевые интерфейсы могут быть разными- сетевые карты Ethernet, модемы на выделенных и коммутируемых линиях, X.25 PAD, ISDN и т.д.
В зависимости от сложности сети, нам требуется либо статическая, либо динамическая маршрутизация, либо их сочетание. Статическая маршрутизация применяется тогда, когда пути следования пакетов можно задать заранее. Один из жизненных примеров: сеть на тонком коаксиальном кабеле очень ненадежна, и, чтобы хоть немного повысить надежность, где-то в середине ее поставили компьютер с двумя сетевыми интерфейсами. Другой пример- подключение локальной сети к провайдеру Internet. Здесь известно, что все пакеты, не относящиеся к данной локальной сети, надо передать провайдеру, а он уже сам должен с ними разбираться.
Когда нужна динамическая маршрутизация? Возьмем такой пример, чисто учебный (рисунок ниже). Пусть у нас имеются три сети (A, B и C), каждая из которых соединена с каждой маршрутизаторами по выделенной линии. Фактически, кстати, возникают еще три сети- это соединения AB, BC и AC (обозначим их AB, BC и AC). Из сети A мы желаем работать с компьютером в B. Пакеты могут достигнуть его двумя путями: либо через выделенную линию AB, либо проходя через AC, сеть C и далее через BC. Мы можем воспользоваться статической маршрутизацией и жестко задать маршрут (пакеты для B передавать только через AB), но хочется, чтобы при возможном разрыве связи AB пакеты автоматически пошли по альтернативному пути, а при восстановлении связи был восстановлен старый путь. Это и есть динамическая маршрутизация. Программы-демоны должны следить за состоянием сети и автоматически находить наиболее выгодный маршрут.
Рис. 1
1.1 Модели сети и стандарты
Перемещение информации между компьютерами различных схем является чрезвычайно сложной задачей. В начале 1980 гг. Международная Организация по Стандартизации (ISO) признала необходимость в создания модели сети, которая могла бы помочь поставщикам создавать реализации взаимодействующих сетей. Эту потребность удовлетворяет эталонная модель "Взаимодействие Открытых Систем" (OSI), выпущенная в 1984 г.
Эталонная модель OSI быстро стала основной архитектурной моделью для передачи межкомпьютерных сообщений. Несмотря на то, что были разработаны другие архитектурные модели (в основном патентованные), большинство поставщиков сетей, когда им необходимо предоставить обучающую информацию пользователям поставляемых ими изделий, ссылаются на них как на изделия для сети, соответствующей эталонной модели OSI. И действительно, эта модель является самым лучшим средством, имеющемся в распоряжении тех, кто надеется изучить технологию сетей.
Эталонная модель OSI делит проблему перемещения информации между компьютерами через среду сети на семь менее крупных, и следовательно, более легко разрешимых проблем. Каждая из этих семи проблем выбрана потому, что она относительно автономна, и следовательно, ее легче решить без чрезмерной опоры на внешнюю информацию.
Каждая из семи областей проблемы решалась с помощью одного из уровней модели. Большинство устройств сети реализует все семь уровней. Однако в режиме потока информации некоторые реализации сети пропускают один или более уровней. Два самых низших уровня OSI реализуются аппаратным и программным обеспечением; остальные пять высших уровней, как правило, реализуются программным обеспечением.
Справочная модель OSI описывает, каким образом информация проделывает путь через среду сети (например, провода) от одной прикладной программы (например, программы обработки крупноформатных таблиц) до другой прикладной программы, находящейся в другом компьютере. Т.к.информация, которая должна быть отослана, проходит вниз через уровни системы, по мере этого продвижения она становится все меньше похожей на человеческий язык и все больше похожей на ту информацию, которую понимают компьютеры, а именно "единицы" и "нули".
Эталонная модель OSI не является реализацией сети. Она только определяет функции каждого уровня. В этом отношении она напоминает план для постройки корабля. Точно также, как для выполнения фактической работы по плану могут быть заключены контракты с любым количеством кораблестроительных компаний, любое число поставщиков сети могут построить протокол реализации по спецификации протокола. И если этот план не будет предельно понятным, корабли, построенные различными компаниями, пользующимися одним и тем же планом, пусть незначительно, но будут отличаться друг от друга. Примером самого незначительного отличия могут быть гвозди, забитые в разных местах.
Чем объясняется разница в реализациях одного и того же плана корабля (или спецификации протокола)? Частично эта разница вызвана неспособностью любой спецификации учесть все возможные детали реализации. Кроме того, разные люди, реализующие один и тот же проект, всегда интерпретируют его немного по-разному. И наконец, неизбежные ошибки реализации приводят к тому, что изделия разных реализаций отличаются исполнением. Этим объясняется то, что реализация протокола Х одной компании не всегда взаимодействует с реализацией этого протокола, осуществленной другой компанией.
маршрутизатор протокол сеть метрика
2. Протоколы машинизации их метрики
2.1 Дистанционно-векторный протокол RIP
Протокол RIP (Routing Information Protocol) представляет собой один из старейших протоколов обмена маршрутной информацией, однако он до сих пор чрезвычайно распространен в вычислительных сетях. Помимо версии RIP для сетей TCP/IP, существует также версия RIP для сетей IPX/SPX компании Novell.
В этом протоколе все сети имеют номера (способ образования номера зависит от используемого в сети протокола сетевого уровня), а все маршрутизаторы - идентификаторы. Протокол RIP широко использует понятие "вектор расстояний". Вектор расстояний представляет собой набор пар чисел, являющихся номерами сетей и расстояниями до них в хопах.
Вектора расстояний итерационно распространяются маршрутизаторами по сети, и через несколько шагов каждый маршрутизатор имеет данные о достижимых для него сетях и о расстояниях до них. Если связь с какой-либо сетью обрывается, то маршрутизатор отмечает этот факт тем, что присваивает элементу вектора, соответствующему расстоянию до этой сети, максимально возможное значение, которое имеет специальный смысл - "связи нет". Таким значением в протоколе RIP является число 16.
На рисунке ниже приведен пример сети, состоящей из пяти маршрутизаторов, имеющих идентификаторы от 1 до 6, и из шести сетей от A до F, образованных прямыми связями типа "точка-точка" пример сети построен в программе cisco packet tracer student.
На рисунке 2.1 приведена начальная информация, содержащаяся в топологической базе маршрутизатора 2, а также информация в этой же базе после двух итераций обмена маршрутными пакетами протокола RIP. После определенного числа итераций маршрутизатор 2 будет знать о расстояниях до всех сетей интерсети, причем у него может быть несколько альтернативных вариантов отправки пакета к сети назначения. Пусть в нашем примере сетью назначения является сеть D.
Рисунок 2.1. - сеть из 5 маршрутизаторов
При необходимости отправить пакет в сеть D маршрутизатор просматривает свою базу данных маршрутов и выбирает порт, имеющий наименьшее расстояния до сети назначения (в данном случае порт, связывающий его с маршрутизатором 3).
Для адаптации к изменению состояния связей и оборудования с каждой записью таблицы маршрутизации связан таймер. Если за время тайм-аута не придет новое сообщение, подтверждающее этот маршрут, то он удаляется из маршрутной таблицы.
При использовании протокола RIP работает эвристический алгоритм динамического программирования Беллмана-Форда, и решение, найденное с его помощью является не оптимальным, а близким к оптимальному. Преимуществом протокола RIP является его вычислительная простота, а недостатками - увеличение трафика при периодической рассылке широковещательных пакетов и не оптимальность найденного маршрута.
2.2 Протокол состояния связей OSPF
Протокол OSPF (Open Shortest Path Firs) является достаточно современной реализацией алгоритма состояния связей (он принят в 1991 году) и обладает многими особенностями, ориентированными на применение в больших гетерогенных сетях.
Протокол OSPF вычисляет маршруты в IP-сетях, сохраняя при этом другие протоколы обмена маршрутной информацией.
Непосредственно связанные (то есть достижимые без использования промежуточных маршрутизаторов) маршрутизаторы называются "соседями". Каждый маршрутизатор хранит информацию о том, в каком состоянии по его мнению находится сосед. Маршрутизатор полагается на соседние маршрутизаторы и передает им пакеты данных только в том случае, если он уверен, что они полностью работоспособны. Для выяснения состояния связей маршрутизаторы-соседи достаточно часто обмениваются короткими сообщениями HELLO.
Для распространения по сети данных о состоянии связей маршрутизаторы обмениваются сообщениями другого типа. Эти сообщения называются router links advertisement - объявление о связях маршрутизатора (точнее, о состоянии связей). OSPF-маршрутизаторы обмениваются не только своими, но и чужими объявлениями о связях, получая в конце-концов информацию о состоянии всех связей сети. Эта информация и образует граф связей сети, который, естественно, один и тот же для всех маршрутизаторов сети.
Кроме информации о соседях, маршрутизатор в своем объявлении перечисляет IP-подсети, с которыми он связан непосредственно, поэтому после получения информации о графе связей сети, вычисление маршрута до каждой сети производится непосредственно по этому графу по алгоритму Дэйкстры. Более точно, маршрутизатор вычисляет путь не до конкретной сети, а до маршрутизатора, к которому эта сеть подключена. Каждый маршрутизатор имеет уникальный идентификатор, который передается в объявлении о состояниях связей. Такой подход дает возможность не тратить IP-адреса на связи типа "точка-точка" между маршрутизаторами, к которым не подключены рабочие станции.
Маршрутизатор вычисляет оптимальный маршрут до каждой адресуемой сети, но запоминает только первый промежуточный маршрутизатор из каждого маршрута. Таким образом, результатом вычислений оптимальных маршрутов является список строк, в которых указывается номер сети и идентификатор маршрутизатора, которому нужно переслать пакет для этой сети. Указанный список маршрутов и является маршрутной таблицей, но вычислен он на основании полной информации о графе связей сети, а не частичной информации, как в протоколе RIP.
Описанный подход приводит к результату, который не может быть достигнут при использовании протокола RIP или других дистанционно-векторных алгоритмов. RIP предполагает, что все подсети определенной IP-сети имеют один и тот же размер, то есть, что все они могут потенциально иметь одинаковое число IP-узлов, адреса которых не перекрываются. Более того, классическая реализация RIP требует, чтобы выделенные линии "точка-точка" имели IP-адрес, что приводит к дополнительным затратам IP-адресов.
В OSPF такие требования отсутствуют: сети могут иметь различное число хостов и могут перекрываться. Под перекрытием понимается наличие нескольких маршрутов к одной и той же сети. В этом случае адрес сети в пришедшем пакете может совпасть с адресом сети, присвоенным нескольким портам. Если адрес принадлежит нескольким подсетям в базе данных маршрутов, то продвигающий пакет маршрутизатор использует наиболее специфический маршрут, то есть адрес подсети, имеющей более длинную маску.
Например, если рабочая группа ответвляется от главной сети, то она имеет адрес главной сети наряду с более специфическим адресом, определяемым маской подсети. При выборе маршрута к хосту в подсети этой рабочей группы маршрутизатор найдет два пути, один для главной сети и один для рабочей группы. Так как последний более специфичен, то он и будет выбран. Этот механизм является обобщением понятия "маршрут по умолчанию", используемого во многих сетях.
Использование подсетей с различным количеством хостов является вполне естественным. Например, если в здании или кампусе на каждом этаже имеются локальные сети, и на некоторых этажах компьютеров больше, чем на других, то администратор может выбрать размеры подсетей, отражающие ожидаемые требования каждого этажа, а не соответствующие размеру наибольшей подсети.
2.3 Организация таблиц маршрутизации
Важнейшей задачей сетевого уровня является маршрутизация - передача пакетов между двумя конечными узлами в составной сети.
Рассмотрим принципы формирования таблиц маршрутизации на примере составной сети, изображенной на рисунке ниже. В этой сети 20 маршрутизаторов объединяют 18 сетей в общую сеть; S1, S2, ... , S20 - это номера сетей. Маршрутизаторы имеют по нескольку портов (по крайней мере, по два), к которым присоединяются сети. Каждый порт маршрутизатора можно рассматривать как отдельный узел сети: он имеет собственный сетевой адрес и собственный локальный адрес в той подсети, которая к нему подключена. Например, маршрутизатор под номером 1 имеет три порта, к которым подключены сети S1, S2, S3. На рисунке сетевые адреса этих портов обозначены как М1(1), Ml (2) и М1(3). Порт М1(1) имеет локальный адрес в сети с номером S1, порт Ml (2) - в сети S2, а порт М1(3) - в сети S3. Таким образом, маршрутизатор можно рассматривать как совокупность нескольких узлов, каждый из которых входит в свою сеть. Как единое устройство маршрутизатор не имеет ни отдельного сетевого адреса, ни какого-либо локального адреса.
Рисунок 2.2 Принципы маршрутизации в составной сети
В сложных составных сетях почти всегда существует несколько альтернативных маршрутов для передачи пакетов между двумя конечными узлами. Маршрут - это последовательность маршрутизаторов, которые должен пройти пакет от отправителя до пункта назначения. Так, пакет, отправленный из узла А в узел В, может пройти через маршрутизаторы 17, 12, 5, 4 и 1 или маршрутизаторы 17,13, 7, 6 и З. Нетрудно найти еще несколько маршрутов между узлами А и В.
Задачу выбора маршрута из нескольких возможных решают маршрутизаторы, а также конечные узлы. Маршрут выбирается на основании имеющейся у этих устройств информации о текущей конфигурации сети, а также на основании указанного критерия выбора маршрута. Обычно в качестве критерия выступает задержка прохождения маршрута отдельным пакетом или средняя пропускная способность маршрута для последовательности пакетов. Часто также используется весьма простой критерий, учитывающий только количество пройденных в маршруте промежуточных маршрутизаторов (хопов).
Чтобы по адресу сети назначения можно было бы выбрать рациональный маршрут дальнейшего следования пакета, каждый конечный узел и маршрутизатор анализируют специальную информационную структуру, которая называется таблицей маршрутизации. Используя условные обозначения для сетевых адресов маршрутизаторов и номеров сетей в том виде, как они приведены на рисунке выше, посмотрим, как могла бы выглядеть таблица маршрутизации, например, в маршрутизаторе 4:
Таблица 2.1 Маршрутизации маршрутизатора
В первом столбце таблицы перечисляются номера сетей, входящих в интерсеть. В каждой строке таблицы следом за номером сети указывается сетевой адрес следующего маршрутизатора (более точно, сетевой адрес соответствующего порта следующего маршрутизатора), на который надо направить пакет, чтобы тот передвигался по направлению к сети с данным номером по рациональному маршруту.
Когда на маршрутизатор поступает новый пакет, номер сети назначения, извлеченный из поступившего кадра, последовательно сравнивается с номерами сетей из каждой строки таблицы. Строка с совпавшим номером сети указывает, на какой ближайший маршрутизатор следует направить пакет. Например, если на какой-либо порт маршрутизатора 4 поступает пакет, адресованный в сеть S6, то из таблицы маршрутизации следует, что адрес следующего маршрутизатора - М2(1), то есть очередным этапом движения данного пакета будет движение к порту 1 маршрутизатора 2.
Поскольку пакет может быть адресован в любую сеть составной сети, может показаться, что каждая таблица маршрутизации должна иметь записи обо всех сетях, входящих в составную сеть. Но при таком подходе в случае крупной сети объем таблиц маршрутизации может оказаться очень большим, что повлияет на время ее просмотра, потребует много места для хранения и т. п. Поэтому на практике число записей в таблице маршрутизации стараются уменьшить за счет использования специальной записи - «маршрутизатор по умолчанию» (default). Действительно, если принять во внимание топологию составной сети, то в таблицах маршрутизаторов, находящихся на периферии составной сети, достаточно записать номера сетей, непосредственно подсоединенных к данному маршрутизатору или расположенных поблизости, на тупиковых маршрутах. Обо всех же остальных сетях можно сделать в таблице единственную запись, указывающую на маршрутизатор, через который пролегает путь ко всем этим сетям. Такой маршрутизатор называется маршрутизатором по умолчанию, а вместо номера сети в соответствующей строке помещается особая запись, например default. В нашем примере таким маршрутизатором по умолчанию для сети S5 является маршрутизатор 5, точнее его порт М5(1). Это означает, что путь из сети S5 почти ко всем сетям большой составной сети пролегает через этот порт маршрутизатора.
Перед тем как передать пакет следующему маршрутизатору, текущий маршрутизатор должен определить, на какой из нескольких собственных портов он должен поместить данный пакет. Для этого служит третий столбец таблицы маршрутизации. Еще раз подчеркнем, что каждый порт идентифицируется собственным сетевым адресом.
Некоторые реализации сетевых протоколов допускают наличие в таблице маршрутизации сразу нескольких строк, соответствующих одному и тому же адресу сети назначения. В этом случае при выборе маршрута принимается во внимание столбец «Расстояние до сети назначения». При этом под расстоянием понимается любая метрика, используемая в соответствии с заданным в сетевом пакете критерием (часто называемым классом сервиса). Расстояние может измеряться хопами, временем прохождения пакета по линиям связи, какой-либо характеристикой надежности линий связи на данном маршруте или другой величиной, отражающей качество данного маршрута по отношению к заданному критерию. Если маршрутизатор поддерживает несколько классов сервиса пакетов, то таблица маршрутов составляется и применяется отдельно для каждого вида сервиса (критерия выбора маршрута).
В табл таблице маршрутизации маршрутизатора 4 (см. выше) расстояние между сетями измерялось хопами. Расстояние для сетей, непосредственно подключенных к портам маршрутизатора, здесь принимается равным 0, однако в некоторых реализациях отсчет расстояний начинается с 1.
Наличие нескольких маршрутов к одному узлу делают возможным передачу трафика к этому узлу параллельно по нескольким каналам связи, это повышает пропускную способность и надежность сети.
Задачу маршрутизации решают не только промежуточные узлы - маршрутизаторы, но и конечные узлы - компьютеры. Средства сетевого уровня, установленные на конечном узле, при обработке пакета должны, прежде всего, определить, направляется ли он в другую сеть или адресован какому-нибудь узлу данной сети. Если номер сети назначения совпадает с номером данной сети, то для данного пакета не требуется решать задачу маршрутизации. Если же номера сетей отправления и назначения не совпадают, то маршрутизация нужна. Таблицы маршрутизации конечных узлов полностью аналогичны таблицам маршрутизации, хранящимся на маршрутизаторах.
Таблица маршрутизации для конечного узла В приведённой выше сети могла бы выглядеть следующим образом (см. таблицу ниже). Здесь MB - сетевой адрес порта компьютера В. На основании этой таблицы конечный узел В выбирает, на какой из двух имеющихся в локальной сети S3 маршрутизаторов следует посылать тот или иной пакет.
Таблица 2.2 Маршрутизации конечного узла.
Конечные узлы в еще большей степени, чем маршрутизаторы, пользуются приемом маршрутизации по умолчанию. Хотя они также в общем случае имеют в своем распоряжении таблицу маршрутизации, ее объем обычно незначителен, что объясняется периферийным расположением всех конечных узлов. Конечный узел часто вообще работает без таблицы маршрутизации, имея только сведения об адресе маршрутизатора по умолчанию. При наличии одного маршрутизатора в локальной сети этот вариант - единственно возможный для всех конечных узлов. Но даже при наличии нескольких маршрутизаторов в локальной сети, когда перед конечным узлом стоит проблема их выбора, задание маршрута по умолчанию часто используется в компьютерах для сокращения объема их таблицы маршрутизации.
Ниже помещена таблица маршрутизации другого конечного узла составной сети - узла А. Компактный вид таблицы маршрутизации отражает тот факт, что все пакеты, направляемые из узла А, либо не выходят за пределы сети S12, либо непременно проходят через порт 1 маршрутизатора 17. Этот маршрутизатор и определен в таблице маршрутизации в качестве маршрутизатора по умолчанию.
Таблица 2.3. Маршрутизации конечного узла.
Еще одним отличием работы маршрутизатора и конечного узла при выборе маршрута является способ построения таблицы маршрутизации. Если маршрутизаторы обычно автоматически создают таблицы маршрутизации, обмениваясь служебной информацией, то для конечных узлов таблицы маршрутизации часто создаются вручную администраторами и хранятся в виде постоянных файл.
3. Практическая часть
1. Построили рабочую сеть в программе cisco packet tracer student.
Рисунок 3.1 - окно программы с рабочей сетью
Предприятию выделена сеть 10.1.0.0/16. Администратором сети (т.е. Вами) имеющаяся сеть разделена на необходимое количество подсетей. Маршрутизаторы реализуют протокол автоматического обмена таблицами маршрутизации RIP.
В сети имеется один сервер автоматической конфигурации сетевых параметров узлов DHCP (на компьютере PC2). Указанный сервер функционирует под управлением операционной системы Microsoft Windows Server (версия не ниже 2003). Компьютер PC2 выступает источником многоадресной рассылки видеопотока (один канал, транслируется бесконечно).
Компьютер PC1 - пользовательская рабочая станция. Он может подключаться к произвольной сети (в процессе отладки сети должна быть проверена его работоспособность во всех сетях предприятия).
В данной сети будут расположатся 5 маршрутизаторов , 3 коммутатора и 2 ПК.
Сеть будет разделена на 3 подсети так как находятся в разных сетках.
Заключение
В результате работы над курсовым проектом была самостоятельно изучена работа и функции выполняемые маршрутизаторами в компьютерных сетях. Были рассмотрены режимы работы, протоколы, таблицы маршрутизации и разные варианты построения локальных вычислительных сетей при помощи маршрутизаторов.
Маршрутизаторы разработаны для использования в больших ЛВС и существенно оптимизируют работу всей сети, экономят затраты на передачу информации, повышают надёжность работы сети в случае выхода из строя как отдельных её компонентов, так и целых сегментов, позволяя использовать разные режимы передачи информации внутри сети, а также дают возможность соединения в единую сеть подсетей с разными протоколами и интерфейсами и способами передачи данных. Маршрутизатор программируется посредством таблицы маршрутизации и в дальнейшем не требует вмешательства администратора сети. Соседние маршрутизаторы периодически опрашивают друг друга и в случае пропадания связи перенаправляют информацию на другие «живые» участки сети. При помощи таблицы маршрутизации можно задать приоритет передачи информации через тот или иной маршрутизатор, исходя из соображения скорости, важности, стоимости и загруженности сети.
Список использованных источников
1. Олифер В.Г., Олифер Н.А. «Компьютерные сети». Питер. Санкт - Петербург, 2012 г.
2. Крейг Закер «Компьютерные сети. Модернизация и поиск неисправностей» БХВ Санкт- Петербург 2011 г.
3. Коммутация и маршрутизация IP/IPX трафика . М.В.Кульгин, АйТи.-М.:Компьютер- пресс, 2009 г.
4. Компьютерные сети. Учебный курс , 2-е изд. - MicrosoftPress, Русская редакция, 2010 г.
5. Методическое пособие по расчету контура заземлений.
Приложение А
Рабочая сеть в программе
Размещено на Allbest.ru
Подобные документы
Создание компьютерной сети в программе cisco. Распределение ip-адресов для каждого из узлов сети. Теоретические основы о протоколах OSPF и RIP. Принцип работы протоколов. Распределение адресного пространства. Конфигурирование маршрутизаторов и OSPF.
практическая работа [521,4 K], добавлен 03.05.2019Распространенные сетевые протоколы и стандарты, применяемые в современных компьютерных сетях. Классификация сетей по определенным признакам. Модели сетевого взаимодействия, технологии и протоколы передачи данных. Вопросы технической реализации сети.
реферат [22,0 K], добавлен 07.02.2011Рассмотрение конфигурации сети Frame-Relay. Особенности распределения адресного пространства. Способы определения IP адреса интерфейсов маршрутизаторов. Методы настройки средств суммирования адресов. Знакомство с этапами проектирования сети OSPF.
курсовая работа [486,7 K], добавлен 23.04.2017Теоретические основы организации локальных сетей. Общие сведения о сетях. Топология сетей. Основные протоколы обмена в компьютерных сетях. Обзор программных средств. Аутентификация и авторизация. Система Kerberos. Установка и настройка протоколов сети.
курсовая работа [46,3 K], добавлен 15.05.2007Разработка проекта корпоративной ЛВС. Реализация схемы IP-адресации с помощью сервисов DHCP и технологии NAT. Настройка сетевого оборудования (коммутаторов, маршрутизаторов, DNS, HTTP-серверов), динамической маршрутизации при помощи протоколов RIP и OSPF.
курсовая работа [990,5 K], добавлен 15.01.2012Основы теории численной оптимизации переменной метрики. Создание модуля, содержащего реализацию методов переменной метрики (метод Бройдена, метод Дэвидона – Флетчера – Пауэлла), практическая реализация программы для работы с исследуемым модулем.
курсовая работа [308,0 K], добавлен 17.03.2013Разработка и использование протокола маршрутизации RIP в небольших и сравнительно однородных сетях. Причины неустойчивой работы по протоколу, их устранение. Применения протокола Hello для обнаружения соседей и установления с ними отношений смежности.
курсовая работа [264,0 K], добавлен 06.06.2009Топологии компьютерных сетей. Методы доступа к каналам связи. Среды передачи данных. Структурная модель и уровни OSI. Протоколы IP и TCP, принципы маршрутизации пакетов. Характеристика системы DNS. Создание и расчет компьютерной сети для предприятия.
курсовая работа [2,3 M], добавлен 15.10.2010Основное назначение и принципы работы маршрутизаторов, их классификация по областям применения. Особенности архитектуры и виды устройства. Выбор маршрута и процесс определения пути для отправки пакета данных. Уровни маршрутизации в компьютерных сетях.
реферат [120,1 K], добавлен 24.02.2012Классификация компьютерных сетей. Назначение компьютерной сети. Основные виды вычислительных сетей. Локальная и глобальная вычислительные сети. Способы построения сетей. Одноранговые сети. Проводные и беспроводные каналы. Протоколы передачи данных.
курсовая работа [36,0 K], добавлен 18.10.2008