Компьютерная модель "хищник-жертва"
Законы отношения хищник-жертва. Обзор компьютерной модели размножения млекопитающих на примере модели Лотки-Вольтерры. В приведенном примере исследовалась модель "хищник-жертва", влияние коэффициента рождаемости жертв на численность оленей и волков.
| Рубрика | Программирование, компьютеры и кибернетика |
| Вид | статья |
| Язык | русский |
| Дата добавления | 07.11.2018 |
| Размер файла | 308,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Компьютерная модель «хищник-жертва»
Казачков Игорь Алексеевич
Магнитогорский государственный технический университет
им. Г.И. Носова, институт строительства, архитектуры и искусства, студент 5 курса
Гусева Елена Николаевна
Магнитогорский государственный технический университет
им. Г.И. Носова, институт энергетики и автоматизированный систем, кандидат педагогических наук, доцент кафедры бизнес-информатики и информационных технологий
Данная статья посвящена обзору компьютерной модели «хищник-жертва». Проведенное исследование позволяет утверждать, что экологическое моделирование играет огромную роль в исследовании окружающей среды. Данная проблематика имеет многогранный характер.
Ключевые слова: геометрическая прогрессия роста, математическое моделирование, экологическое моделирование
Computer model «predator-victim». Kazatchkov Igor Alekseevich, Guseva Elena Nikolaevna
This article provides an overview of the computer model "predator-victim". The study suggests that environmental simulation plays a huge role in the study of the environment. This problem is multifaceted.
Keywords: ecological modelling, geometric progression of growth, mathematical modeling
Для исследования окружающей нас среды используют экологическое моделирование. Математические модели используют в тех случаях, когда нет естественной среды и нет естественных объектов, она помогает сделать прогноз влияния разных факторов на исследуемый объект. Данный метод берет на себя функции проверки, построения и интерпретацию полученных результатов. На основе таких форм экологическое моделирование занимается оценкой изменений, окружающей нас среды.
В настоящий момент подобные формы используется для изучения окружающей нас среды, а когда требуется изучить какую-либо из ее областей, то применяют математическое моделирование. [5, с. 19] Данная модель дает возможность спрогнозировать влияние тех или иных факторов на объект изучения. В свое время был предложен тип «хищник - жертва» такими учеными как: Т. Мальтусом (Malthus 1798, Мальтус 1905), Ферхюльстом (Verhulst 1838), Пирлом (Pearl 1927, 1930), а также А. Лотки (Lotka 1925, 1927) и В. Вольтерры (Volterra 1926).Эти модели воспроизводят периодический колебательный режим, возникающий в результате межвидовых взаимодействий в природе.[1, с. 9]
Одним из основных методов познания является моделировка. Помимо того, что в нем можно спрогнозировать изменения, происходящие в окружающей среде, к тому же помогает найти оптимальный способ решения проблемы. Уже давно в экологии используют математические модели, для того чтобы установить закономерности, тенденции развития популяций, помогают выделить суть наблюдений. Макет может служить образцом поведения, объекта.
При воссоздании объектов в математической биологии используются прогнозирования различных систем, предусматриваются специальные индивидуальности биосистем: внутренне строение особи, условия жизнеобеспечения, постоянство экологических систем, благодаря которым сберегается жизнедеятельность систем. [2, с. 34]
Появление компьютерного моделирования значительно раздвинуло рубеж способностей исследования. Возникло вероятность многосторонней реализации трудных форм, не допускающих аналитического изучения, появились новейшие направления, а еще имитационное моделирование.
Рассмотрим, что же такое объект моделирования. «Объектом является замкнутая среда обитания, где происходит взаимодействие двух биологических популяций: хищников и жертв. Процесс роста, вымирания и размножения происходит непосредственно на поверхности среды обитания. Питание жертв происходит за счет тех ресурсов, которые присутствуют в данной среде, а питание хищников происходит за счет жертв. [14, с. 32] При этом питательные ресурсы могут быть как возобновляемые, так и не возобновляемые.
В 1931 году Вито Вольтеррой были выведены следующие законы отношения хищник-жертва. [12, с. 14]
Закон периодического цикла - процесс уничтожения жертвы хищником нередко приводит к периодическим колебаниям численности популяций обоих видов, зависящим только от скорости роста плотоядных и растительноядных, и от исходного соотношения их численности.
Закон сохранения средних величин - средняя численность каждого вида постоянна, независимо от начального уровня, при условии, что специфические скорости увеличения численности популяций, а также эффективность хищничества постоянны.
Закон нарушения средних величин - при сокращении обоих видов пропорционально их числу, средняя численность популяции жертвы растет, а хищников - падает.
Модель хищник-жертва - это особая взаимосвязь хищника с жертвой, в результате которой выигрывают оба. Выживают наиболее здоровые и приспособленные особи к условиям среды обитания, т.е. все это происходит благодаря естественному отбору. В той среде где нет возможности для размножения, хищник рано или поздно уничтожит популяцию жертвы, в последствии чего вымрет и сам» [3, с. 14].
На земле существует множество живых организмов, которые при благоприятных условиях увеличивают численность сородичей до огромных масштабов. Такая способность называется: биотический потенциал вида, т.е. увеличение численности вида за определенный промежуток времени. Каждый вид имеет свой биотический потенциал, к примеру крупные виды организмов за год могут возрасти всего в 1,1 раза, в свою очередь организмы более мелких видов, таких как рачки и т.д. могут увеличить свой вид до 1030 раз, ну а бактерии еще в большем количестве. В любом из этих случаев популяция будет расти в геометрической прогрессии.[4, с. 44]
Экспоненциальным ростом численности называется геометрическая прогрессия роста численности популяции. Такую способность можно наблюдать в лаборатории у бактерий, дрожжей. В не лабораторных условиях экспоненциальный рост возможно увидеть на примере саранчи или же на примере других видов насекомых. Такой рост численности вида можно наблюдать в тех местах где у него практически нет врагов, а продуктов питания более чем достаточно. В конце концов увеличение вида, после того как численность возросла в течении непродолжительного времени, рост популяции начинал снижаться.
Рассмотрим компьютерную модель размножения млекопитающих на примере модели Лотки-Вольтерры. Пусть на некоторой территории обитают два вида животных: олени и волки. Математическая модель изменения численности популяций в модели Лотки-Вольтерры:
Начальное число жертв - xn, число хищников - yn.
Параметры модели:
P1- вероятность встречи с хищником,
P2- коэффициент роста хищников за счет жертв,
d - коэффициент смертности хищников,
a - коэффициент прироста численности жертв. [8, с. 23]
В учебной задаче были заданы такие значения: численность оленей равнялось 500, численности волков равна 10, коэффициент прироста оленей равен 0,02, коэффициент прироста численности волков равен 0,1, вероятность встречи с хищником 0,0026, коэффициент роста хищников за счет жертв 0,000056. Данные рассчитаны на 203 года.
Исследуем влияние коэффициент прироста жертв на развитие двух популяций, остальные параметры оставим без изменений. На схеме 1 наблюдается увеличение численности жертвы и затем, с некоторым опозданием наблюдается прирост хищников. Затем хищники выбивают жертв, число жертв резко падает и вслед за ним уменьшается число хищников (рис. 1).
Проанализируем изменение модели, увеличив коэффициент рождаемости жертвы а=0,06. На схеме 2 мы видим циклический колебательный процесс, приводящий к увеличению численности обоих популяций со временем (рис. 2).
Рисунок 1. Численность популяций при низкой рождаемости у жертв
Рисунок 2.Численность популяций при средней рождаемости у жертв
Рассмотрим как изменится динамика популяций при высоком значении коэффициента рождаемости жертвы а=1,13. На рис. 3 наблюдается резкое увеличение численности обеих популяций с последующим вымиранием, как жертвы, так и хищника. Это происходит за счет того, что численность популяции жертв увеличилось до такого количества, что стали заканчиваться ресурсы, вследствие чего происходит вымирание жертвы. Вымирание хищников происходит из-за того, что сократилось количество жертв и у хищников закончились ресурсы для существования.
Рисунок 3.Численность популяций при высокой рождаемости у жертв
компьютерный модель хищник жертва
Исходя из анализа данных компьютерного эксперимента, можно сделать выводы о том, что компьютерное моделирование позволяет нам прогнозировать численность популяций, изучать влияние различных факторов на популяционную динамику. В приведенном примере мы исследовали модель «хищник-жертва», влияние коэффициента рождаемости жертв на численность оленей и волков. Небольшой прирост популяции жертв приводит к небольшому увеличению жертв, которую через некоторый период уничтожают хищники. Умеренный прирост популяции жертв приводит к увеличению численности обеих популяций. Высокий прирост популяции жертв приводит сначала к быстрому росту популяции жертв, это влияет на увеличение роста хищников, но затем расплодившиеся хищники быстро уничтожают популяцию оленей. В итоге оба вида вымирают.
Библиографический список
1. Марчук Т.И. Математическое моделирование в проблеме окружающей среды. - М.: Наука, 2008
2. Криксунов Е.А., Пасечник В.В., Сидорин А.П. Экология. - М.: Издательский дом «Дрофа», 2010 г.
3. Гусева Е. Н. Математика и информатика учеб. пособие/ Е. Н. Гусева, И.Ю. Ефимова, И.Н. Мовчан, Л.А. Савельева. - 3-е изд., стереотип.-М.:Флинта, 2015-400с.
4. Горелов А.А. Экология - наука - моделирование. - М., 2007 г.
5. Основы Турбо-Паскаля. - М.: Учебно-инженерный центр «МВТУ - Фестон-дидактик», 2012 г.
6. Гусева Е. Н. Экономико-математическое моделирование: учеб. пособ.: / Е. Н. Гусева. - Москва: МПСИ, 2011.-216 с.
7. Ризниченко Г.Ю. Экология математическая. М., 2009 г.
8. Гусева Е. Н. Теория вероятностей и математическая статистика: учеб. пособие - 5-е изд., дополнено и переработано: [электронный ресурс]/ Е. Н. Гусева. -М.: Флинта, 2011.- 220 с.
9. Ризниченко Г.Ю. Экология математическая. М., 2009 г.
10. рубецков Д. И. Феномен математической модели Лотки-Вольтерры и сходных с ней // Известия Вузов. Прикладная нелинейная динамика. -- 2011. -- № 2. -- С. 69-87.
11. Ризниченко Г.Ю. Экология математическая. М., 2009 г.
12. Вольтерра В. Математическая теория борьбы за существование. Москва-Ижевск:, Институт компьютерных технологий, 2004. -- 288 с.
13. Природа мыслей и модели природы. / Под ред. Д.М. Гвишиани, И.Б. Новика, С.А. Пегова. М.: Мысль, 2006 г.
14. Королев А. Компьютерное моделирование/А. Королев: Бином, 2010.
Размещено на Allbest.ru
Подобные документы
Особенности моделирования биологических систем с использованием программы "AnyLogic". Влияние различных факторов на популяции жертв и хищников. Принципы имитационного моделирования и его общий алгоритм с помощью ЭВМ. Анализ результатов моделирования.
курсовая работа [922,2 K], добавлен 30.01.2016Построение математической модели динамики популяций при помощи электронной таблицы MS Excel. Применение уравнения Лотка-Вольтерра как модели динамики системы "хищник-жертва". Контроль над численностью популяций живых организмов в экологических системах.
контрольная работа [659,9 K], добавлен 02.04.2017Простейшая компьютерная модель турбоагрегата, исследование на ней динамической устойчивости. Создание компьютерной модели СГ в координатах d, q, 0, получение осциллограммы токов в обмотках статора и ротора и напряжения в обмотках статора в режиме ХХ.
дипломная работа [4,8 M], добавлен 05.10.2008Построение имитационной модели и метод решения задач, при использовании которого исследуемая система заменяется более простым объектом, описывающим реальную систему. Имитационная модель компьютерной программы, её значение при решении моделируемых задач.
курсовая работа [343,1 K], добавлен 04.06.2012Создание математической модели системы массового обслуживания на примере банка. Разработка имитационной модели на языке программирования С++. Блок-схема программы, перевод модели на язык программирования. Верификация и валидация имитационной модели.
курсовая работа [630,5 K], добавлен 01.06.2015Основные законы смешения цветов. Волновые свойства света. Основные характеристики цвета (атрибуты). Аддитивная цветовая модель RGB. Цветовые модели CMY и HSV. Кодировка цветов в моделях. Формат BMP для хранения растровых изображений, структура файла.
презентация [198,0 K], добавлен 28.08.2013Модель взаимодействия открытых систем Open Systems Interconnection Reference Model. Основные особенности модели ISO/OSI. Характеристики физических сигналов, метод кодирования, способ подключения. Канальный уровень модели ISO/OSI. Передача и прием кадров.
презентация [52,7 K], добавлен 25.10.2013Создание математической и компьютерной модели работы светофора с датчиком на скоростном шоссе с плотным автомобильным графиком. Конечный автомат – абстрактный, без выходного потока с конечным числом возможных состояний. Работа модели в Visual Basic.
курсовая работа [348,0 K], добавлен 28.06.2011Сущность, цели и порядок построения экономико-математической модели. Организационная модель структуры предприятия - состав функциональных подразделений предприятия и связи их подчинения и взаимодействия на примере ОАО швейная фабрика "Березка".
курсовая работа [90,8 K], добавлен 02.03.2008Сущность и характеристика типов моделей данных: иерархическая, сетевая и реляционная. Базовые понятия реляционной модели данных. Атрибуты, схема отношения базы данных. Условия целостности данных. Связи между таблицами. Общие представления о модели данных.
курсовая работа [36,1 K], добавлен 29.01.2011


