Разработка нейросетевой системы оценки стоимости недвижимости
Краткая история развития искусственных нейронных сетей. Анализ факторов, влияющих на формирование цены на недвижимость. Математическая модель нейрона. Сравнение многослойного персептрона и радиально-базисной сети. Архитектурная и адаптивная динамика.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 02.09.2018 |
Размер файла | 3,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Математическая модель искусственной нейронной сети. Структура многослойного персептрона. Обучение без учителя, методом соревнования. Правило коррекции по ошибке. Метод Хэбба. Генетический алгоритм. Применение нейронных сетей для синтеза регуляторов.
дипломная работа [1,5 M], добавлен 17.09.2013Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.
дипломная работа [814,6 K], добавлен 29.09.2014Понятие и свойства искусственных нейронных сетей, их функциональное сходство с человеческим мозгом, принцип их работы, области использования. Экспертная система и надежность нейронных сетей. Модель искусственного нейрона с активационной функцией.
реферат [158,2 K], добавлен 16.03.2011Диагностический анализ изучения алгоритмов обучения нейронных сетей "с учителем". Сбор входных и выходных переменных для наблюдений и понятие пре/пост процессирования. Подготовка и обобщение многослойного персептрона, модель обратного распространения.
курсовая работа [249,3 K], добавлен 22.06.2011Описание технологического процесса напуска бумаги. Конструкция бумагоделательной машины. Обоснование применения нейронных сетей в управлении формованием бумажного полотна. Математическая модель нейрона. Моделирование двух структур нейронных сетей.
курсовая работа [1,5 M], добавлен 15.10.2012Механизм работы нервной системы и мозга человека. Схема биологического нейрона и его математическая модель. Принцип работы искусственной нейронной сети, этапы ее построения и обучения. Применение нейронных сетей в интеллектуальных системах управления.
презентация [98,6 K], добавлен 16.10.2013Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.
лабораторная работа [1,1 M], добавлен 05.10.2010Принципы организации и функционирования биологических нейронных сетей. Система соединенных и взаимодействующих между собой простых процессоров. Нейронные сети Маккалока и Питтса. Оценка качества кластеризации. Обучение многослойного персептрона.
курсовая работа [1,1 M], добавлен 06.12.2010Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.
дипломная работа [1,8 M], добавлен 08.02.2017История возникновения, примеры использования и основные виды искусственных нейронных сетей. Анализ задач, решаемых при помощи Персептрона Розенблатта, создание схемы имитационной модели в среде Delphi. Исходные коды компьютерной программы Perseptron.
дипломная работа [933,1 K], добавлен 18.12.2011Сущность и функции искусственных нейронных сетей (ИНС), их классификация. Структурные элементы искусственного нейрона. Различия между ИНС и машинами с архитектурой фон Неймана. Построение и обучение данных сетей, области и перспективы их применения.
презентация [1,4 M], добавлен 14.10.2013Определение и виды модели, ее отличие от понятия моделирования. Формула искусственного нейрона. Структура передачи сигнала между нейронами. Способность искусственных нейронных сетей к обучению и переобучению. Особенности их применения в финансовой сфере.
реферат [136,2 K], добавлен 25.04.2016Особенности нейронных сетей как параллельных вычислительных структур, ассоциируемых с работой человеческого мозга. История искусственных нейронных сетей как универсального инструмента для решения широкого класса задач. Программное обеспечение их работы.
презентация [582,1 K], добавлен 25.06.2013Анализ нейронных сетей и выбор их разновидностей. Модель многослойного персептрона с обучением по методу обратного распространения ошибки. Проектирование библиотеки классов для реализации нейросети и тестовой программы, описание тестирующей программы.
курсовая работа [515,4 K], добавлен 19.06.2010История развития, применение искусственных нейронных сетей. Распознавание образов в сети. Сжатие данных и ассоциативная память. Проектирование экспертной системы, позволяющей диагностировать заболевания органов пищеварения. Программная реализация системы.
курсовая работа [744,0 K], добавлен 05.02.2016Анализ предметной области и факторов, влияющих на принятие решения. Обоснование выбора входных параметров. Определение возможных состояний системы и генерируемых откликов. Разработка базы знаний. Математическая модель определения стоимости компьютера.
курсовая работа [41,8 K], добавлен 10.01.2011Разработка системы оценки кредитоспособности заемщика с использованием персептрона. Сущность скоринговых систем, нейронных сетей. Скоринговые системы как средство минимизации кредитного риска. Этапы проектирования сети. Определение значимости параметров.
презентация [882,9 K], добавлен 19.08.2013Разработка систем автоматического управления. Свойства нейронных сетей. Сравнительные оценки традиционных ЭВМ и нейрокомпьютеров. Формальная модель искусственного нейрона. Обучение нейроконтроллера при помощи алгоритма обратного распространения ошибки.
реферат [1,4 M], добавлен 05.12.2010Изучение сути искусственных нейронных сетей. Векторные пространства. Матрицы и линейные преобразования векторов. Биологический нейрон и его кибернетическая модель. Теорема об обучении персептрона. Линейная разделимость и персептронная представляемость.
курсовая работа [239,7 K], добавлен 06.06.2012Математическая модель нейронной сети. Однослойный и многослойный персептрон, рекуррентные сети. Обучение нейронных сетей с учителем и без него. Алгоритм обратного распространения ошибки. Подготовка данных, схема системы сети с динамическим объектом.
дипломная работа [2,6 M], добавлен 23.09.2013