Создание сети, которую использует RIP в качестве протокола маршрутизации

Изучение общих свойств и классификации протоколов маршрутизации. Проведение исследования внутренних и внешних шлюзовых протоколов. Проектирование сети в системе моделирования Riverbed Modeler. Характеристика основных типов и кодов ICMP-сообщений.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 07.08.2018
Размер файла 3,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Актуальность. В общедоступном значении слова маршрутизация означает передвижение информации от источника к пункту назначения через объединенную сеть. При этом, как правило, на пути встречается по крайней мере один узел. Маршрутизация часто противопоставляется объединению сетей с помощью моста, которое, в популярном понимании этого способа, выполняет точно такие же функции. Основное различие между ними заключается в том, что объединение с помощью моста имеет место на Уровне 2 эталонной модели ISO, в то время как маршрутизация встречается на Уровне 3. Этой разницей объясняется то, что маршрутизация и объединение по мостовой схеме используют различную информацию в процессе ее перемещения от источника к месту назначения. Результатом этого является то, что маршрутизация и объединение с помощью моста выполняют свои задачи разными способами; фактически, имеется несколько различных видов маршрутизации и объединения с помощью мостов.

Тема маршрутизации освещалась в научной литературе о компьютерах более 2-х десятилетий, однако с коммерческой точки зрения маршрутизация приобрела популярность только в 1970 гг. В течение этого периода сети были довольно простыми, гомогенными окружениями. Крупномасштабное объединение сетей стало популярно только в последнее время. Одной из книг в которой подробно расписаны проблемы маршрутизации и даны основные определения «Телекоммуникационные технологии» автора Семенова Ю.А.

Объектом бакалаврской работы являются протокол маршрутной информации RIP.

Предметом исследования данной работы является маршрутизация в IP-сетях.

Цель данной работы - создать сеть, которая использует RIP в качестве протокола маршрутизации, проанализировать таблицы маршрутизации, сгенерированные в маршрутизаторах, и пронаблюдать, как RIP зависит от отказов канала.

Для достижения данной цели требуется следующее:

1. Рассмотреть основы маршрутизации.

2. Изучить основные протоколы маршрутизации.

3. Спроектировать сеть в системе моделирования Riverbed Modeler.

4. Настроить сеть.

5. Получить результаты моделирования.

6. Рассмотреть полученные таблицы маршрутизации.

7. Сделать заключение по бакалаврской работе.

Согласно цели и выделенных задач, можно сформировать следующую структуру бакалаврской работы:

1. Первая глава включает следующие пункты: схема IP-маршрутизации, таблицы маршрутизации и их просмотр.

2. Во второй главе описаны протоколы маршрутизации.

3. В третьей главе подробно описан процесс исследование протокола RIP и рассмотрены полученные таблицы маршрутизации.

4. Заключение по бакалаврской работе.

1. Межсетевое взаимодействие

Маршрутизация включает в себя два основных компонента: определение оптимальных трактов маршрутизации и транспортировка информационных групп (обычно называемых пакетами) через объединенную сеть. В настоящей работе последний из этих двух компонентов называется коммутацией. Коммутация относительно проста. С другой стороны, определение маршрута может быть очень сложным процессом.

1.1 Схема IP-маршрутизации

Рассмотрим механизм IP-маршрутизации на примере составной сети, представленной на рис. 1.1. В этой сети 20 маршрутизаторов (изображенных в виде пронумерованных квадрантных блоков) объединяют 18 сетей в общую сеть; N1, N2,..., N18 -- это номера сетей . На каждом маршрутизаторе и конечны х узла х А и В функционируют протоколы IP. К нескольким интерфейсам (портам) маршрутизаторов присоединяются сети. Каждый интерфейс маршрутизатора можно рассматривать как отдельный узел сети: он имеет сетевой адрес и локальный адрес в той подсети, которая к нему подключена. Например, маршрутизатор под номером 1 имеет три интерфейса, к которым подключены сети N1, N2, N3. На рисунке сетевые адреса этих портов обозначены 1Р11, IP12 и IP13. Интерфейс IP11 является узлом сети N1, и следовательно, в поле номера сети порта IP11 содержится номер N1. Аналогично интерфейс IP12 -- это узел в сети N2, а порт IР13 -- узел в сети N3. Таким образом, маршрутизатор можно рассматривать как совокупность нескольких узлов, каждый из которых входит в свою сеть. Как единое устройство маршрутизатор не имеет выделенного адреса, ни сетевого, ни локального.

Рис. 1.1 - Принципы маршрутизации в составной сети

В сложных составных сетях почти всегда существуют несколько альтернативных маршрутов для передачи пакетов между двумя конечными узлами. Так, пакет, отправленный из узла А в узел В, может пройти через маршрутизаторы 17, 12, 5, 4 и 1 или маршрутизаторы 17, 13, 7, 6 и 3. Нетрудно найти еще несколько маршрутов между узлами А и В.

Задачу выбора маршрута из нескольких возможных решают маршрутизаторы, а также конечные узлы. Маршрут выбирается на основании имеющейся у этих устройств информации о текущей конфигурации сети, а также на основании критерия выбора маршрута. В качестве критерия часто выступает задержка прохождения маршрута отдельным пакетом, средняя пропускная способность маршрута для последовательности пакетов или наиболее простой критерий, учитывающий только количество пройденных на маршруте промежуточных маршрутизаторов (ретрансляционных участков, или хопов). Полученная в результате анализа информация о маршрутах дальнейшего следования пакетов помещается в таблицу маршрутизации. [1]

1.2 Упрощенная таблица маршрутизации

Используя условные обозначения для сетевых адресов маршрутизаторов и номеров сетей, показанные на рис. 1.1, посмотрим, как могла бы выглядеть таблица маршрутизации, например, в маршрутизаторе 4 (табл. 1.1).

Первый столбец таблицы содержит адреса назначения пакетов.

В каждой строке таблицы следом за адресом назначения указывается сетевой адрес следующего маршрутизатора (точнее, сетевой адрес интерфейса следующего маршрутизатора), на который надо направить пакет, чтобы тот передвигался по направлению к заданному адресу по рациональному маршруту.

Таблица 1.1 Таблица маршрутизации маршрутизатора 4

Перед тем как передать пакет следующему маршрутизатору, текущий маршрутизатор должен определить, на какой из нескольких собственных портов (IP41 или IP42) он должен поместить данный пакет. Для этого служит третий столбец таблицы маршрутизации, содержащий сетевые адреса выходных интерфейсов.

Некоторые реализации сетевых протоколов допускают наличие в таблице маршрутизации сразу нескольких строк, соответствующих одному и тому же адресу назначения. В этом случае при выборе маршрута принимается во внимание столбец, представляющий расстояние до сети назначения. При этом расстояние измеряется в любой метрике, используемой в соответствии с заданным в сетевом пакете критерием. Расстояние может измеряться временем прохождения пакета по линиям связи, различными характеристиками надежности линий связи на данном маршруте, пропускной способностью или другой величиной, отражающей качество данного маршрута по отношению к заданному критерию. В табл. 1.1 расстояние между сетями измеряется хопами. Расстояние для сетей, непосредственно подключенных к портам маршрутизатора, здесь принимается равным 0, однако в некоторых реализациях отсчет расстояний начинается с 1.

Когда пакет поступает на маршрутизатор, модуль IP извлекает из его заголовка номер сети назначения и последовательно сравнивает его с номерами сетей из каждой строки таблицы. Строка с совпавшим номером сети показывает ближайший маршрутизатор, на который следует направить пакет. Например, если на какой-либо порт маршрутизатора 4 поступает пакет, адресованный в сеть N6, то из таблицы маршрутизации следует, что адрес следующего маршрутизатора -- IP21. то есть очередным этапом движения данного пакета будет движение к порту 1 маршрутизатора 2. [2]

Чаще всего в качестве адреса назначения в таблице указывается не весь IP-адрес, а только номер сети назначения. Таким образом, для всех пакетов, направляемых в одну и ту же сеть, протокол IP будет предлагать один и тот же маршрут (мы пока не принимаем во внимание возможные изменения состояния сети, такие как отказы маршрутизаторов или обрывы кабелей). Однако в некоторых случаях возникает необходимость для одного из узлов сети определить специфический маршрут, отличающийся от маршрута, заданного для всех остальных узлов сети. Для этого в таблицу маршрутизации помещают для данного узла отдельную строку, содержащую его полный IP-адрес и соответствующую маршрутную информацию. Такого рода запись имеется в табл. 1.1 для узла В. Пусть, например, администратор маршрутизатора 4, руководствуясь соображениями безопасности, решил, что пакеты, следующие в узел В (полный адрес IРв), должны идти через маршрутизатор 2 (интерфейс IP21), а не маршрутизатор 1 (интерфейс IP12). через который передаются пакеты всем остальным узлам сети N3. Если в таблице имеются записи о маршрутах как к сети в целом, так и к ее отдельному узлу, то при поступлении пакета, адресованного данному узлу, маршрутизатор отдаст предпочтение специфическому маршруту.

Поскольку пакет может быть адресован в любую сеть составной сети, может показаться, что каждая таблица маршрутизации должна иметь записи обо всех сетях, входящих в составную сеть. Однако при таком подходе в случае крупной сети объем таблиц маршрутизации может оказаться очень большим, что повлияет на время ее просмотра, потребует много места для хранения и т. п. Поэтому на практике широко известен прием уменьшения количества записей в таблице маршрутизации, основанный на введении маршрута по умолчанию (default route), учитывающего особенности топологии сети. Рассмотрим, например, маршрутизаторы, находящиеся на периферии составной сети.

В их таблицах достаточно записать номера только тех сетей, которые непосредственно подсоединены к данному маршрутизатору или расположены поблизости на тупиковых маршрутах. Обо всех же остальных сетях можно сделать в таблице единственную запись, указывающую на маршрутизатор, через который пролегает путь ко всем этим сетям. Такой маршрутизатор называется маршрутизатором по умолчанию (default router). В нашем примере на маршрутизаторе 4 имеются специфические маршруты только для пакетов, следующих в сети N1-N6. Для всех остальных пакетов, адресованных в сети N7-N18, маршрутизатор предлагает продолжить путь через один и тот же порт IP51 маршрутизатора 5, который в данном случае и является маршрутизатором по умолчанию.

1.3 Таблицы маршрутизации конечных узлов

Задачу маршрутизации решают не только промежуточные узлы (маршрутизаторы), но и конечные узлы -- компьютеры. Решение этой задачи начинается с того, что средствами протокола IP на конечном узле определяется, направлен ли пакет в другую сеть или адресован какому-нибудь узлу данной сети. Если номер сети назначения совпадает с номером данной сети, это означает, что пакет маршрутизировать не требуется. В противном случае маршрутизация нужна.

Структуры таблиц маршрутизации конечных узлов и транзитных маршрутизаторов аналогичны. Обратимся снова к сети, изображенной на рис. 1.1. Таблица маршрутизации конечного узла В, принадлежащего сети N3, могла бы выглядеть так, как табл. 1.2. Здесь IPв -- сетевой адрес интерфейса компьютера В. На основании этой таблицы конечный узел В выбирает, на какой из двух имеющихся в локальной сети N3 маршрутизаторов (R1 или R3) следует посылать тот или иной пакет.

Таблица 1.2 Таблица маршрутизации конечного узла В

Конечные узлы в еще большей степени, чем маршрутизаторы, пользуются приемом маршрутизации по умолчанию. Хотя они также в общем случае имеют в своем распоряжении таблицу маршрутизации, ее объем обычно незначителен, что объясняется периферийным расположением всех конечных узлов. Конечный узел часто вообще работает без таблицы маршрутизации, имея только сведения об адресе маршрутизатора по умолчанию. При наличии одного маршрутизатора в локальной сети этот вариант -- единственно возможный для всех конечных узлов. Но даже при наличии нескольких маршрутизаторов в локальной сети, когда перед конечным узлом стоит проблема их выбора, часто в компьютерах для повышения производительности прибегают к заданию маршрута по умолчанию.

Рассмотрим таблицу маршрутизации другого конечного узла составной сети -- узла А (табл. 1.3). Компактный вид таблицы маршрутизации узла А отражает тот факт, что все пакеты, направляемые из узла А, либо не выходят за пределы сети N12, либо непременно проходят через порт 1 маршрутизатора 17. Этот маршрутизатор и определен в таблице маршрутизации в качестве маршрутизатора по умолчанию. [3]

Таблица 1.3 Таблица маршрутизации конечного узла А

Еще одним отличием работы маршрутизатора и конечного узла является способ построения таблицы маршрутизации. Если маршрутизаторы, как правило, автоматически создают таблицы маршрутизации, обмениваясь служебной информацией, то для конечных узлов таблицы маршрутизации часто создаются вручную администраторами и хранятся в виде постоянных файлов на дисках.

1.4 Просмотр таблиц маршрутизации без масок

Рассмотрим алгоритм просмотра таблицы маршрутизации, реализуемый на маршрутизаторе протоколом IP. При его описании мы будем использовать табл. 1.1 и рис. 1.2.

1. Пусть на один из интерфейсов маршрутизатора поступает пакет. Протокол IP извлекает из пакета IP-адрес назначения (предположим, адрес назначения IРв).

2. Выполняется первая фаза просмотра таблицы -- поиск конкретного маршрута к узлу. IP-адрес (целиком) последовательно строка за строкой сравнивается с содержимым поля адреса назначения таблицы маршрутизации. Если произошло совпадение (как в табл. 1.1), то из соответствующей строки извлекаются адрес следующего маршрутизатора (IP21) и идентификатор выходного интерфейса (IP41). На этом просмотр таблицы заканчивается.

3. Предположим теперь, что в таблице нет строки с адресом назначения IРв, а значит, совпадения не произошло. В этом случае протокол IP переходит ко второй фазе просмотра -- поиску маршрута к сети назначения. Из IP-адреса выделяется номер сети (в нашем примере из адреса IРв выделяется номер сети N3), и таблица снова просматривается на предмет совпадения номера сети в какой-либо строке с номером сети из пакета. При совпадении (в нашем примере оно произошло) из соответствующей строки таблицы извлекаются адрес следующего маршрутизатора (IP12) и идентификатор выходного интерфейса (IP41). Просмотр таблицы на этом завершается.

4. Наконец, предположим, что адрес назначения в пакете был таков, что совпадения не произошло ни в первой, ни во второй фазах просмотра. В таком случае средствами протокола IP либо выбирается маршрут по умолчанию (и пакет направляется по адресу IP51), либо, если маршрут по умолчанию отсутствует, пакет отбрасывается. Просмотр таблицы на этом заканчивается.

1.5 Маршрутизация в неоднородных сетях

Взаимодействие протоколов маршрутизации.

Водной и той же сети могут одновременно работать несколько разных протоколов маршрутизации (рис. 1.2). Это означает, что на некоторых (не обязательно всех) маршрутизаторах сети установлено и функционирует несколько протоколов маршрутизации, но при этом, естественно, через сеть взаимодействуют только одноименные протоколы. То есть если маршрутизатор 1 поддерживает, например, протоколы RIP и OSPF, маршрутизатор 2 -- только RIP, а маршрутизатор 3 -- только OSPF, то маршрутизатор 1 будет взаимодействовать с маршрутизатором 2 по протоколу RIP, с маршрутизатором 3 -- по OSPF, а маршрутизаторы 2 и 3 вообще непосредственно друг с другом взаимодействовать не смогут. [4]

В маршрутизаторе, который поддерживает одновременно несколько протоколов, каждая запись в таблице является результатом работы одного из этих протоколов. Если информация о некоторой сети появляется от нескольких протоколов, то для однозначности выбора маршрута (а данные разных протоколов могут вести к разным рациональным маршрутам) устанавливаются приоритеты протоколов маршрутизации. Обычно предпочтение отдается протоколам LSA, как располагающим более полной информацией о сети по сравнению с протоколами DVA. В некоторых ОС в формах вывода на экран и печать в каждой записи таблицы маршрутизации имеется отметка о том, с помощью какого протокола маршрутизации эта запись получена. Но даже если эта отметка на экран и не выводится, она обязательно имеется во внутреннем представлении таблицы маршрутизации.

Рис. 1.2 - Применение нескольких протоколов маршрутизации в одной сети

По умолчанию каждый протокол маршрутизации, работающий на определенном маршрутизаторе, распространяет только «собственную» информацию, то есть ту информацию, которая была получена данным маршрутизатором по данному протоколу. Например, если о маршруте к некоторой сети маршрутизатор узнал по протоколу RIP, то и распространять по сети объявления об этом маршруте он будет с помощью протокола RIP. Однако такой «избирательный» режим работы маршрутизаторов ставит невидимые барьеры на пути распространения маршрутной информации, создавая в составной сети области взаимной недостижимости. Задача маршрутизации решалась бы эффективнее, если бы маршрутизаторы могли обмениваться маршрутной информацией, полученной разными протоколами маршрутизации. Такая возможность реализуется в особом режиме работы маршрутизатора, называемом перераспределением. Этот режим позволяет одному протоколу маршрутизации использовать не только «свои», но и «чужие» записи таблицы маршрутизации, полученные с помощью другого протокола маршрутизации, указанного при конфигурировании. Как видим, применение нескольких протоколов маршрутизации даже в пределах небольшой составной сети -- дело не простое, от администратора требуется провести определенную работу по конфигурированию каждого маршрутизатора. Очевидно, что для крупных составных сетей нужно качественно иное решение.

Внутренние и внешние шлюзовые протоколы.

Такое решение было найдено для самой крупной на сегодня составной сети -- Интернета. Это решение базируется на понятии автономной системы.

Обычно автономной системой управляет один поставщик услуг Интернета, самостоятельно выбирая, какие протоколы маршрутизации должны использоваться в некоторой автономной системе и каким образом между ними должно выполняться перераспределение маршрутной информации. Крупные поставщики услуг и корпорации могут представить свою составную сеть как набор нескольких автономных систем. Регистрация автономных систем происходит централизованно, как и регистрация IP-адресов и DNS-имен. Номер автономной системы состоит из 16 разрядов и никак не связан с префиксами IP-адресов входящих в нее сетей. В соответствии с этой концепцией Интернет выглядит как набор взаимосвязанных автономных систем, каждая из которых состоит из взаимосвязанных сетей (рис. 1.3), соединенными внешними шлюзами.

Основная цель деления Интернета на автономные системы -- обеспечение многоуровневого подхода к маршрутизации. До введения автономных систем предполагался двухуровневый подход, то есть сначала маршрут определялся как последовательность сетей, а затем вел непосредственно к заданному узлу в конечной сети (именно этот подход мы использовали до сих пор). С появлением автономных систем появляется третий, верхний, уровень маршрутизации -- теперь сначала маршрут определяется как последовательность автономных систем, затем -- как последовательность сетей и только потом ведет к конечному узлу.

Рис. 1.3 - Автономные системы Интернета

Выбор маршрута между автономными системами осуществляют внешние шлюзы, использующие особый тип протокола маршрутизации, так называемый внешний шлюзовой протокол (Exterior Gateway Protocol, EGP). В настоящее время для работы в такой роли сообщество Интернета утвердило стандартный пограничный шлюзовой протокол версии 4 (Border Gateway Protocol, BGPv4). В качестве адреса следующего маршрутизатора в протоколе BGPv4 указывается адрес точки входа в соседнюю автономную систему.

За маршрут внутри автономной системы отвечают внутренние шлюзовые протоколы (Interior Gateway Protocol, IGP). К числу IGP относятся знакомые нам протоколы RIP, OSPF и IS-IS. В случае транзитной автономной системы эти протоколы указывают точную последовательность маршрутизаторов от точки входа в автономную систему до точки выхода из нее.

2. Протоколы маршрутизации

2.1 Общие свойства и классификация протоколов маршрутизации

Протоколы маршрутизации обеспечивают поиск и фиксацию маршрутов продвижения данных через составную сеть TCP/IP. Давайте остановимся на некоторых общих свойствах протоколов данного класса.

Начнем с того, что существуют такие способы продвижения пакетов в составных сетях, которые вообще не требуют наличия таблиц маршрутизации на маршрутизаторах. Наиболее простым способом передачи пакетов по сети является так называемая лавинная маршрутизация, когда каждый маршрутизатор передает пакет всем своим непосредственным соседям, исключая тот, от которого его получил. Понятно, что это -- не самый рациональный способ, так как пропускная способность сети используется крайне расточительно, тем не менее такой подход работоспособен (именно так мосты и коммутаторы локальных сетей поступают с кадрами, имеющими неизвестные адреса). [5]

Еще одним видом маршрутизации, не требующим наличия таблиц маршрутизации, является маршрутизация от источника (source routing). В этом случае отправитель помещает в пакет информацию о том, какие промежуточные маршрутизаторы должны участвовать в передаче пакета к сети назначения. На основе этой информации каждый маршрутизатор считывает адрес следующего маршрутизатора, и если он действительно является адресом его непосредственного соседа, передает ему пакет для дальнейшей обработки. Вопрос о том, как отправитель узнает точный маршрут следования пакета через сеть, остается открытым. Маршрут может задавать либо вручную администратор, либо автоматически узел-отправитель, но в этом случае ему нужно поддерживать какой-либо протокол маршрутизации, который сообщит ему о топологии и состоянии сети. Маршрутизация от источника была опробована на этапе зарождения Интернета и сохранилась как практически неиспользуемая возможность протокола IPv4. В, IPv6 маршрутизация от источника является одним из стандартных режимов продвижения пакетов, существует даже специальный заголовок для реализации этого режима.

Тем не менее большинство протоколов маршрутизации нацелено на создание таблиц маршрутизации. Выбор рационального маршрута может осуществляться на основании различных критериев. Сегодня в IP-сетях применяются протоколы маршрутизации, в которых маршрут выбирается по критерию кратчайшего расстояния. При этом расстояние измеряется в различных метриках. Чаще всего используется простейшая метрика -- количество хопов, то есть количество маршрутизаторов, которые нужно преодолеть пакету до сети назначения. В качестве метрик применяются также пропускная способность и надежность каналов, вносимые ими задержки и любые комбинации этих метрик.

Различные протоколы маршрутизации обладают разным временем конвергенции. Протокол маршрутизации должен обеспечить создание на маршрутизаторах согласованных друг с другом таблиц маршрутизации, то есть таких таблиц, которые обеспечат доставку пакета от исходной сети в сеть назначения за конечное число шагов. Современные протоколы маршрутизации поддерживают согласованность таблиц, однако это их свойство не абсолютно -- при изменениях в сети, например при отказе каналов передачи данных или самих маршрутизаторов, возникают периоды нестабильной работы сети, вызванной временной несогласованностью таблиц разных маршрутизаторов. Протоколу маршрутизации обычно нужно некоторое время, которое называется временем конвергенции, чтобы после нескольких итераций обмена служебной информацией все маршрутизаторы сети внесли изменения в свои таблицы и в результате таблицы снова стали согласованными. Различают протоколы, выполняющие статическую и адаптивную (динамическую) маршрутизацию.

При статической маршрутизации все записи в таблице имеют неизменяемый, статический статус, что подразумевает бесконечный срок их жизни. Записи о маршрутах составляются и вводятся в память каждого маршрутизатора вручную администратором сети. При изменении состояния сети администратору необходимо срочно отразить эти изменения в соответствующих таблицах маршрутизации, иначе может произойти их рассогласование, и сеть будет работать некорректно.

При адаптивной маршрутизации все изменения конфигурации сети автоматически отражаются в таблицах маршрутизации благодаря протоколам маршрутизации. Эти протоколы собирают информацию о топологии связей в сети, что позволяет им оперативно отрабатывать все текущие изменения. В таблицах маршрутизации при адаптивной маршрутизации обычно имеется информация об интервале времени, в течение которого данный маршрут будет оставаться действительным. Это время называют временем жизни (TTL) маршрута. Если по истечении времени жизни существование маршрута не подтверждается протоколом маршрутизации, то он считается нерабочим, пакеты по нему больше не посылаются. Протоколы адаптивной маршрутизации бывают распределенными и централизованными.

При распределенном подходе все маршрутизаторы сети находятся в равных условиях, они находят маршруты и строят собственные таблицы маршрутизации, работая в тесной кооперации друг с другом, постоянно обмениваясь информацией о конфигурации сети. При централизованном подходе в сети существует один выделенный маршрутизатор, который собирает всю информацию о топологии и состоянии сети от других маршрутизаторов. На основании этих данных выделенный маршрутизатор (который иногда называют сервером маршрутов) строит таблицы маршрутизации для всех остальных маршрутизаторов сети, а затем распространяет их по сети, чтобы каждый маршрутизатор получил собственную таблицу и в дальнейшем самостоятельно принимал решение о продвижении каждого пакета.

В дистанционно-векторных алгоритмах (DVA) каждый маршрутизатор периодически и широковещательно рассылает по сети вектор, компонентами которого являются расстояния (измеренные в той или иной метрике) от данного маршрутизатора до всех известных ему сетей. Пакеты протоколов маршрутизации обычно называют объявлениями о расстояниях, так как с их помощью маршрутизатор объявляет остальным маршрутизатора известные ему сведения о конфигурации сети.

Получив от некоторого соседа вектор расстояний (дистанций) до известных тому сетей, маршрутизатор наращивает компоненты вектора на величину расстояния от себя до данного соседа. Кроме того, он дополняет вектор информацией об известных ему самому других сетях, о которых он узнал непосредственно (если они подключены к его портам) или из аналогичных объявлений других маршрутизаторов. Обновленное значение вектора маршрутизатор рассылает своим соседям. В конце концов, каждый маршрутизатор узнает через соседние маршрутизаторы информацию обо всех имеющихся в составной сети сетях и о расстояниях до них. [7]

Затем он выбирает из нескольких альтернативных маршрутов к каждой сети тот маршрут, который обладает наименьшим значением метрики. Маршрутизатор, передавший информацию о данном маршруте, отмечается в таблице маршрутизации как следующий (next hop).

Наиболее распространенным протоколом, основанным на дистанционно-векторном алгоритме, является протокол RIP.

Алгоритмы состояния связей (LSA) обеспечивают каждый маршрутизатор информацией, достаточной для построения точного графа связей сети. Все маршрутизаторы работают на основании одного и того же графа, что делает процесс маршрутизации более устойчивым к изменениям конфигурации.

Каждый маршрутизатор использует граф сети для нахождения оптимальных по некоторому критерию маршрутов до каждой из сетей, входящих в составную сеть.

Чтобы понять, в каком состоянии находятся линии связи, подключенные к его портам, маршрутизатор периодически обменивается короткими пакетами HELLO со своими ближайшими соседями. В отличие от протоколов DVA, которые регулярно передают вектор расстояний, протоколы LSA ограничиваются короткими сообщениями, а передача более объемных сообщений происходит только в тех случаях, когда с помощью сообщений HELLO был установлен факт изменения состояния какой-либо связи.

Протоколами, основанными на алгоритме состояния связей, являются протокол IS-IS стека OSI (этот протокол используется также в стеке TCP/IP) и протокол OSPF стека TCP/IP.

2.2 Протокол RIP

Протокол RIP (Routing Information Protocol -- протокол маршрутной информации) является внутренним протоколом маршрутизации дистанционно-векторного типа.

Будучи простым в реализации, этот протокол чаще всего используется в небольших сетях. Для IP имеются две версии RIP -- RIPvl и RIPv2. Протокол RIPvl не поддерживает масок. Протокол RIPv2 передает информацию о масках сетей, поэтому он в большей степени соответствует требованиям сегодняшнего дня. Так как построение таблиц маршрутизации в обеих версиях протокола принципиально не отличается, в дальнейшем для упрощения записей будет описываться работа версии 1.

Построение таблицы маршрутизации. Для измерения расстояния до сети стандарты протокола RIP допускают различные виды метрик: хопы, значения пропускной способности, вносимые задержки, надежность сетей (то есть соответствующие признакам D, Т и R в поле качества сервиса IP-пакета), а также любые комбинации этих метрик. Метрика должна обладать свойством аддитивности -- метрика составного пути должна быть равна сумме метрик составляющих этого пути. В большинстве реализаций RIP используется простейшая метрика -- количество хопов, то есть количество промежуточных маршрутизаторов, которые нужно преодолеть пакету до сети назначения. Рассмотрим процесс построения таблицы маршрутизации с помощью протокола RIP на примере составной сети, изображенной на рис. 2.1. Мы разделим этот процесс на 5 этапов.

Этап 1 - создание минимальной таблицы. Данная составная сеть включает восемь IP- сетей, связанных четырьмя маршрутизаторами с идентификаторами: Rl, R2, R3 и R4. Маршрутизаторы, работающие по протоколу RIP, могут иметь идентификаторы, однако для протокола они не являются необходимыми. В RIP-сообщениях эти идентификаторы не передаются.

Рис. 2.1 - Сеть, построенная на маршрутизаторах

В исходном состоянии на каждом маршрутизаторе программным обеспечением стека TCP/ IP автоматически создается минимальная таблица маршрутизации, в которой учитываются только непосредственно подсоединенные сети. На рис. 2.1 адреса портов маршрутизаторов в отличие от адресов сетей помещены в овалы.

Табл. 2.1 позволяет оценить примерный вид минимальной таблицы маршрутизации маршрутизатора R1.

Таблица 2.1 Минимальная таблица маршрутизации маршрутизатора R1

Минимальные таблицы маршрутизации в других маршрутизаторах будут выглядеть соответственно, например, таблица маршрутизатора R2 будет состоять из трех записей (табл. 2.2).

Таблица 2.2 Минимальная таблица маршрутизации маршрутизатора R2

Этап 2 -- рассылка минимальной таблицы соседям. После инициализации каждый маршрутизатор начинает посылать своим соседям сообщения протокола RIP, в которых содержится его минимальная таблица. RIP-сообщения передаются в дейтаграммах протокола UDP и включают два параметра для каждой сети: ее IP-адрес и расстояние до нее от пере- дающего сообщение маршрутизатора.

По отношению к любому маршрутизатору соседями являются те маршрутизаторы, которым данный маршрутизатор может передать IP-пакет по какой-либо своей сети, не пользуясь услугами промежуточных маршрутизаторов. Например, для маршрутизатора R1 соседями являются маршрутизаторы R2 и R3, а для маршрутизатора R4 -- маршрутизаторы R2 и R3.

Таким образом, маршрутизатор R1 передает маршрутизаторам R2 и R3 следующие сообщения:

* сеть 201.36.14.0, расстояние 1;

* сеть 132.11.0.0, расстояние 1;

* сеть 194.27.18.0, расстояние 1.

Этап 3 -- получение RIP-сообщений от соседей и обработка полученной информации. После получения аналогичных сообщений от маршрутизаторов R2 и R3 маршрутизатор R1 наращивает каждое полученное поле метрики на единицу и запоминает, через какой порт и от какого маршрутизатора получена новая информация (адрес этого маршрутизатора станет адресом следующего маршрутизатора, если эта запись будет внесена в таблицу маршрутизации). Затем маршрутизатор начинает сравнивать новую информацию с той, которая хранится в его таблице маршрутизации (табл. 2.3). шлюзовой протокол маршрутизация сеть

Таблица 2.3 Таблица маршрутизации маршрутизатора R1

Записи с четвертой по девятую получены от соседних маршрутизаторов, и они претендуют на помещение в таблицу. Однако только записи с четвертой по седьмую попадают в таблицу, а записи восьмая и девятая -- нет. Это происходит потому, что они содержат данные об уже имеющихся в таблице маршрутизатора R1 сетях, а расстояние до них больше, чем в существующих записях.

Протокол RIP замещает запись о какой-либо сети только в том случае, если новая информация имеет лучшую метрику (с меньшим расстоянием в хопах), чем имеющаяся. В результате в таблице маршрутизации о каждой сети остается только одна запись; если же имеется несколько записей, равнозначных в отношении путей к одной и той же сети, то все равно в таблице остается одна запись, которая пришла в маршрутизатор первая по времени. Для этого правила существует исключение -- если худшая информация о какой- либо сети пришла от того же маршрутизатора, на основании сообщения которого была создана данная запись, то худшая информация замещает лучшую.

Аналогичные операции с новой информацией выполняют и остальные маршрутизаторы сети.

Этап 4 -- рассылка новой таблицы соседям. Каждый маршрутизатор отсылает новое RIP- сообщение всем своим соседям. В этом сообщении он помещает данные обо всех известных ему сетях: как непосредственно подключенных, так и удаленных, о которых маршрутизатор узнал из RIP-сообщений.

Этап 5 -- получение RIP-сообщений от соседей и обработка полученной информации. Этап 5 повторяет этап 3 -- маршрутизаторы принимают RIP-сообщения, обрабатывают содержащуюся в них информацию и на ее основании корректируют свои таблицы маршрутизации.

Посмотрим, как это делает маршрутизатор R1 (табл. 2.4). [7]

На этом этапе маршрутизатор R1 получает от маршрутизатора R3 информацию о сети 132.15.0.0, которую тот, в свою очередь, на предыдущем цикле работы получил от маршрутизатора R4. Маршрутизатор уже знает о сети 132.15.0.0, причем старая информация имеет лучшую метрику, чем новая, поэтому новая информация об этой сети отбрасывается.

О сети 202.101.16.0 маршрутизатор R1 узнает на этом этапе впервые, причем данные о ней приходят от двух соседей -- от R3 и R4. Поскольку метрики в этих сообщениях указаны одинаковые, то в таблицу попадают данные, пришедшие первыми. В нашем примере считается, что маршрутизатор R2 опередил маршрутизатор R3 и первым переслал свое RIP-сообщение маршрутизатору R1.

Таблица 2.4 Таблица маршрутизации маршрутизатора R1

Если маршрутизаторы периодически повторяют этапы рассылки и обработки RIP- сообщений, то за конечное время в сети установится корректный режим маршрутизации. Под корректным режимом маршрутизации здесь понимается такое состояние таблиц маршрутизации, когда все сети достижимы из любой сети с помощью некоторого рационального маршрута. Пакеты будут доходить до адресатов и не зацикливаться в петлях, подобных той, которая образуется на рис. 2.1, маршрутизаторами Rl, R2, R3 и R4.

Очевидно, если в сети все маршрутизаторы, их интерфейсы и соединяющие их линии связи остаются работоспособными, то объявления по протоколу RIP можно делать достаточно редко, например один раз в день. Однако в сетях постоянно происходят изменения -- меняется работоспособность маршрутизаторов и линий связи, кроме того, маршрутизаторы и линии связи могут добавляться в существующую сеть или же выводиться из ее состава. Для адаптации к изменениям в сети протокол RIP использует ряд механизмов.

2.3 Протокол OSPF

Протокол OSPF (Open Shortest Path First -- выбор кратчайшего пути первым) является последним (он принят в 1991 году) протоколом, основанном на алгоритме состояния связей, и обладает многими особенностями, ориентированными на применение в больших гетерогенных сетях.

Два этапа построения таблицы маршрутизации OSPF разбивает процедуру построения таблицы маршрутизации на два этапа, к первому относится построение и поддержание базы данных о состоянии связей сети, ко второму -- нахождение оптимальных маршрутов и генерация таблицы маршрутизации.

Построение и поддержание базы данных о состоянии связей сети. Связи сети могут быть представлены в виде графа, в котором вершинами графа являются маршрутизаторы и подсети, а ребрами -- связи между ними (рис. 2.2). Каждый маршрутизатор обменивается со своими соседями той информацией о графе сети, которой он располагает к данному моменту Этот процесс похож на процесс распространения векторов расстояний до сетей , в протоколе RIP, однако сама информация качественно иная -- это информация о топологии сети. Сообщения, с помощью которых распространяется топологическая информация, называются объявлениями о состоянии связей (Link State Advertisement, LSA) сети. При транзитной передаче объявлений LSA маршрутизаторы не модифицируют информацию, как это происходит в дистанционно-векторных протоколах, в частности в RIP, а передают ее в неизменном виде. В результате все маршрутизаторы сети сохраняют в своей памяти идентичные сведения о текущей конфигурации графа связей сети.

Для контроля состояния связей и соседних маршрутизаторов OSPF-маршрутизаторы передают друг другу особые сообщения HELLO каждые 10 секунд. Небольшой объем этих сообщений делает возможным частое тестирование состояния соседей и связей с ними.

Рис. 2.2 - Граф сети, построенный протоколом OSPF

В том случае, когда сообщения HELLO перестают поступать от какого-либо непосредственного соседа, маршрутизатор делает вывод о том, что состояние связи изменилось с работоспособного на неработоспособное и вносит соответствующие коррективы в свою топологическую базу данных. Одновременно он отсылает всем непосредственным соседям объявление LSA об этом изменении, те также вносят исправления в свои базы данных и, в свою очередь, рассылают данное объявление LSA своим непосредственным соседям. Нахождение оптимальных маршрутов и генерация таблицы маршрутизации. Задача нахождения оптимального пути на графе является достаточно сложной и трудоемкой. В протоколе OSPF для ее решения используется итеративный алгоритм Дийкстры. Каждый маршрутизатор сети, действуя в соответствии с этим алгоритмом, ищет оптимальные маршруты от своих интерфейсов до всех известных ему подсетей. В каждом найденном таким образом маршруте запоминается только один шаг -- до следующего маршрутизатора. Данные об этом шаге и попадают в таблицу маршрутизации. [8]

Если состояние связей в сети изменилось и произошла корректировка графа сети, каждый маршрутизатор заново ищет оптимальные маршруты и корректирует свою таблицу маршрутизации. Аналогичный процесс происходит и в том случае, когда в сети появляется новая связь или новый сосед, объявляющий о себе с помощью своих сообщений HELLO. При работе протокола OSPF конвергенция таблиц маршрутизации к новому согласованному состоянию происходит достаточно быстро, быстрее, чем в сетях, в которых работают дистанционно-векторные протоколы. Это время состоит из времени распространения по сети объявления LSA и времени работы алгоритма Дийкстры, который обладает быстрой сходимостью. Однако вычислительная сложность этого алгоритма предъявляет высокие требования к мощности процессора маршрутизатора.

Когда состояние сети не меняется, то объявления о связях не генерируются, топологические базы данных и таблицы маршрутизации не корректируются, что экономит пропускную способность сети и вычислительные ресурсы маршрутизаторов. Однако у этого правила есть исключение: каждые 30 минут OSPF-маршрутизаторы обмениваются всеми записями базы данных топологической информации, то есть синхронизируют их для более надежной работы сети. Так как этот период достаточно большой, то данное исключение незначительно сказывается на загрузке сети.

2.4 Протокол BGP

Пограничный (внешний) шлюзовой протокол (Border Gateway Protocol, BGP) версии 4 является сегодня основным протоколом обмена маршрутной информацией между автономными системами Интернета. Протокол BGP пришел на смену протоколу EGP, использовавшемуся в тот начальный период, когда Интернет имел единственную магистраль. Эта магистраль являлась центральной автономной системой, к которой присоединялись в соответствии с древовидной топологией все остальные автономные системы. Так как между автономными системами при такой структуре петли исключались, протокол EGP не предпринимал никаких мер для того, чтобы исключить зацикливание маршрутов.

Поясним основные принципы работы BGP на примере (рис. 2.3).

В каждой из трех автономных систем (AS 1021, AS 363 и AS 520) имеется несколько маршрутизаторов, исполняющих роль внешних шлюзов. На каждом из них работает протокол BGP, с помощью которого они общаются между собой.

Маршрутизатор взаимодействует с другими маршрутизаторами по протоколу BGP только в том случае, если администратор явно указывает при конфигурировании, что эти маршрутизаторы являются его соседями. Например, маршрутизатор EG1 в рассматриваемом примере будет взаимодействовать по протоколу BGP с маршрутизатором EG2 не потому, что эти маршрутизаторы соединены двухточечным каналом, а потому, что при конфигурировании маршрутизатора EG1 в качестве соседа ему был указан маршрутизатор EG2 (с адресом 194.200.30.2). Аналогично, при конфигурировании маршрутизатора EG2 его соседом был назначен маршрутизатор EG1 (с адресом 194.200.30.1).

Рис. 2.3 - Поиск маршрута между автономными системами с помощью протокола BGP

Такой способ взаимодействия удобен в ситуации, когда маршрутизаторы, обменивающиеся маршрутной информацией, принадлежат разным поставщикам услуг (ISP). Администратор ISP может решать, с какими автономными системами он будет обмениваться трафиком, а с какими нет, задавая список соседей для своих внешних шлюзов. Протоколы RIP и QSPF, разработанные для применения внутри автономной системы, обмениваются маршрутной информацией со всеми маршрутизаторами, находящимися в пределах их непосредственной досягаемости (по локальной сети или через двухточечный канал). Это означает, что информация обо всех сетях появляется в таблице маршрутизации каждого маршрутизатора, так что каждая сеть оказывается достижимой для каждой. В корпоративной сети это нормальная ситуация, а в сетях ISP нет, поэтому протокол BGP и исполняет здесь особую роль.

Для установления сеанса с указанными соседями BGP-маршрутизаторы используют протокол TCP (порт 179). При установлении BGP-сеанса могут применяться разнообразные способы аутентификации маршрутизаторов, повышающие безопасность работы автономных систем.

Основным сообщением протокола BGP является сообщение UPDATE (обновить), с помощью которого маршрутизатор сообщает маршрутизатору соседней автономной системы о достижимости сетей, относящихся к его собственной автономной системе. Само название этого сообщения говорит о том, что это -- триггерное объявление, которое посылается соседу только тогда, когда в автономной системе что-нибудь резко меняется: появляются новые сети или новые пути к сетям либо же, напротив, исчезают существовавшие сети или пути.

2.5 Протокол ICMP

Можно представить ряд ситуаций, когда протокол IP не может доставить пакет адресату, например истекает время жизни пакета, в таблице маршрутизации отсутствует маршрут к заданному в пакете адресу назначения, пакет не проходит проверку по контрольной сумме, шлюз не имеет достаточно места в своем буфере для передачи какого-либо пакета и т. д., и т. п.

Как мы не раз отмечали, протокол IP доставляет данные, руководствуясь принципом «по возможности», то есть не предпринимает мер для гарантированной передачи данных адресату. Это свойство «необязательности» протокола IP компенсируется протоколами более высоких уровней стека TCP/IP, например TCP на транспортном уровне и в какой-то степени DNS на прикладном уровне. Они берут на себя обязанности по обеспечению надежности, применяя такие известные приемы, как нумерация сообщений, подтверждение доставки, повторная посылка данных.

Протокол ICMP также служит дополнением, компенсирующим ненадежность протокола IP, но несколько другого рода. Он не предназначен для исправления возникших при передаче пакета проблем: если пакет потерян, ICMP не может послать его заново. Задача ICMP другая -- он является средством оповещения отправителя о «несчастных случаях», произошедших с его пакетами. Пусть, например, протокол IP, работающий на каком-либо маршрутизаторе, обнаружил, что пакет для дальнейшей передачи по маршруту необходимо фрагментировать, но в пакете установлен признак DF (не фрагментировать). Протокол IP, обнаруживший, что он не может передать IP-пакет далее по сети, прежде чем отбросить пакет, должен отправить диагностическое ICMP-сообщение конечному узлу-источнику. Для передачи по сети ICMP-сообщение инкапсулируется в поле данных IP-пакета. IP- адрес узла-источника определяется из заголовка пакета, вызвавшего инцидент.

Сообщение, прибывшее в узел-источник, может быть обработано там либо ядром операционной системы, либо протоколами транспортного и прикладного уровней, либо приложениями, либо просто проигнорированы. Важно, что обработка ICMP-сообщений не входит в обязанности протоколов IP и ICMP. [9]

Заметим, что некоторые из пакетов могут исчезнуть в сети, не вызвав при этом никаких оповещений. В частности, протокол ICMP не предусматривает передачу сообщений о проблемах, возникающих при обработке IP-пакетов, несущих ICMP-сообщения об ошибках. Такое решение было принято разработчиками протокола, чтобы не порождать «штормы» в сетях, когда количество сообщений об ошибках лавинообразно возрастает.

Особенностью протокола ICMP является функциональное разнообразие решаемых задач, а следовательно, и связанных с этим сообщений. Все типы сообщений имеют один и тот же формат (рис. 2.4), однако интерпретация полей существенно зависит от того, к какому типу относится сообщение.

Рис. 2.4 - Формат ICMP-сообщения

Заголовок ICМР-сообщения состоит из 8 байт:

* тип (1 байт) -- числовой идентификатор типа сообщения;

* код (1 байт) -- числовой идентификатор, более тонко дифференцирующий тип ошибки;

* контрольная сумма (2 байта) -- подсчитывается для всего ЮМР-сообщения.

На рис. 2.5 показана таблица основных типов ICMP-сообщений. Эти сообщения можно разделить на две группы (помеченные на рисунке условными символами):

* сообщения об ошибках;

* сообщения запрос-ответ.

Сообщения типа запрос-ответ связаны в пары: эхо-запрос -- эхо-ответ, запрос маски - ответ маски, запрос времени -- ответ времени. Отправитель сообщения-запроса всегда рассчитывает на получение соответствующего сообщения-ответа.

Рис. 2.5 - Типы и коды ICMP-сообщений

Сообщения, относящиеся к группе сообщений об ошибках, конкретизируются уточняющим кодом. На рисунке показан фрагмент таблицы кодов для сообщения об ошибке недостижимости узла назначения, имеющей тип 3. Из таблицы мы видим, что это сообщение может быть вызвано различными причинами, такими как неверный адрес сети или узла (код 0 или 1), отсутствием на конечном узле-адресате необходимого протокола прикладного уровня (код 2 -- «протокол недостижим») или открытого порта UDP/TCP (код 3 -- «порт недостижим»). Узел (или сеть) назначения может быть также недостижим по причине временной неработоспособности аппаратуры или из-за того, что маршрутизатор не имеет данных о пути к сети назначения. Всего таблица содержит 15 кодов. Аналогичные таблицы существуют и для других типов сообщений об ошибках.

3. Исследование протокола RIP в системе моделирования Riverbed Modeler

3.1 Протокол маршрутной информации

Маршрутизатор в сети должен быть в состоянии видеть адрес назначения пакета, чтобы определить, какой из выходных портов лучше выбрать для получения пакета на этот адрес. Маршрутизатор принимает это решение путем обращения к таблице переадресации. Основной вопрос маршрутизации - как маршрутизаторы получают информацию в своих таблицах переадресации.

Алгоритмы маршрутизации необходимы для построения таблиц маршрутизации и, следовательно, таблиц переадресации. Основная проблема маршрутизации - найти путь с наименьшей стоимостью между любыми двумя узлами, где стоимость пути равна сумме затрат всех ребер, образующих путь. Маршрутизация достигается в большинстве практических сетей, использующих протоколы маршрутизации между узлами. Протоколы обеспечивают распределенный, динамический способ решить проблему нахождения пути с наименьшей стоимостью в наличии сбоев каналов и узлов и изменение краевых расходов.

Одним из основных классов алгоритмов маршрутизации является дистанционно-векторный алгоритм. Каждый узел строит вектор, содержащий расстояния (затраты) на все остальные узлы и распространяет этот вектор своим ближайшим соседям. RIP является каноническим примером протокола маршрутизации, построенного на алгоритме вектора расстояния. Маршрутизаторы, работающие на RIP, регулярно отправляют уведомления (например, каждые 30 секунд). Маршрутизатор также посылает сообщение об обновлении, когда срабатывает обновление от другого маршрутизатора, заставляющее его изменить свою таблицу маршрутизации. [10]

3.2 Создание нового проекта

1. Запустить Riverbed Modeler Academic Edition ? Из меню File выбрать New.

2. Выбрать Project и нажать OK ? назвать проект <Инициалы>_RIP, сценарий No_Failure ? нажать OK.

3. В окне Startup Wizard: Initial Topology выбрать Create Empty Scenario ? Нажать Next ? В списке Network Scale выбрать Campus ? Нажать три раза Next, затем Finish.

Инициализация сети:

1. Диалоговое окно Object Palette должно появится на вашей рабочей области. Если этого не произошло, открыть его, нажав на . Проверить, что выбран пункт internet_toolbox.

2. Добавить на рабочую область следующие объекты из палитры: один маршрутизатор ethernet4_slip8_gtwy и два объекта 100BaseT_LAN.

3. Чтобы добавить объект из палитры, щелкнуть на его иконку в окне object palette ? Переместить курсор мыши на рабочую область ? Щелкнуть левой кнопкой мыши по месту, где хотите расположить объект ? Щелчок правой кнопкой мыши остановит создание объектов выбранного типа.

4. Используя двунаправленный канал связи 100BaseT соединить только что созданные объекты, как показано на рис. 3.1. Также, переименовать объекты в соответствии с рисунком (щелчок правой кнопкой мыши на объекте ? Set Name).


Подобные документы

  • Общая характеристика протокола ICMP, его назначение и формат сообщений. Анализ применимости протокола ICMP при переходе с набора протоколов IP v4 на набор IP v6. Свойства и принцип работы, сферы применения протоколов обмена маршрутной информацией.

    курсовая работа [210,8 K], добавлен 24.08.2009

  • Рассмотрение понятия обмена информацией в сети. Изучение протоколов динамической маршрутизации различных комбинаций соединений Ethernet и Serial. Определение зависимости прохождения сигнала от типа порта и кабеля. Применение данных типов маршрутизации.

    курсовая работа [1,3 M], добавлен 28.05.2014

  • Основные характеристики и алгоритмы настройки виртуальной локальной вычислительной сети VLAN, протоколов маршрутизации, системы доменных имен и трансляции сетевых адресов с целью разработки корпоративной сети в среде имитационного моделирования.

    курсовая работа [556,1 K], добавлен 23.04.2011

  • Функция приема и передачи сообщений, которую выполняют маршрутизаторы в сетях коммутации пакетов. Доменная служба имен. Информация, которую содержат строки таблицы маршрутизаторов. Категории протоколов по обслуживанию среды, используемые алгоритмы.

    лекция [131,1 K], добавлен 15.04.2014

  • Анализ проблемы обеспечения информационной безопасности при работе в сетях; обоснование необходимости разработки алгоритмов безопасной маршрутизации пакетов сообщений в глобальной информационной сети. Алгоритмизация задач безопасной маршрутизации пакетов.

    дипломная работа [1,0 M], добавлен 21.12.2012

  • Понятие локальной вычислительной сети, ее сущность и особенности, структура и основные элементы. Факторы, влияющие на выбор физической среды передачи. Порядок и этапы составления протоколов маршрутизации, используемые в них алгоритмы и их разновидности.

    реферат [246,6 K], добавлен 02.02.2009

  • Основные положения, связанные с маршрутизацией компьютерных сетей и её видами, протоколами маршрутизации и их разновидностями, алгоритмами маршрутизации, их классификацией, типами и свойствами. Разработка программы и моделирование компьютерной сети.

    курсовая работа [1,8 M], добавлен 04.11.2012

  • Реализация телефонной связи по IP-сети с помощью набора протоколов и оборудования. Разработка подсистемы динамической маршрутизации звонков для системы биллинга и менеджмента в сети IP-телефонии. Основные требования к графическому интерфейсу пользователя.

    дипломная работа [1,8 M], добавлен 08.11.2015

  • Разработка программы – сетевого эмулятора, позволяющего представить в графическом виде топологию маршрутизируемой сети. Сравнительный анализ существующих программных эмуляторов сетей и сетевого оборудования. Моделирование протоколов маршрутизации.

    дипломная работа [512,2 K], добавлен 26.09.2014

  • Проектирование и моделирование линейной вычислительной сети многоэтажного здания. Улучшение производительности LAN посредством VLAN. Настройка QoS в существующей сети. Проектирование Wireless Lan и управление доступом к среде передачи. Описание симуляции.

    дипломная работа [2,6 M], добавлен 10.07.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.