Генетический алгоритм с оценкой временных рядов

Классическая реализация генетического алгоритма на основе оценки временных рядов. Практическая применимость в оптимизационных и поисковых задачах. Анализ подбора оптимальных значений генома методом статистического прогнозирования временных рядов.

Рубрика Программирование, компьютеры и кибернетика
Вид статья
Язык русский
Дата добавления 18.01.2018
Размер файла 25,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Формализованное описание закона Pearson Type V. Характеристика методов получения выборки с распределением Pearson Type V. Исследование временных рядов с шумом заданным Rayleigh. Экспериментальное исследование средней трудоемкости Pirson Type V и Rayleigh.

    курсовая работа [4,5 M], добавлен 20.06.2010

  • Разработка системы прогнозирования временных рядов динамики продаж товаров с учетом факторов влияния ForExSal, предназначенной для определения краткосрочного прогноза предполагаемого спроса. Анализ концептуальной и функциональной схемы работы системы.

    отчет по практике [1,9 M], добавлен 27.03.2011

  • Анализ временных рядов. Разработка программы для среды визуального проектирования Borland Delphi 7.0. Математическая формулировка задачи. Структурная схема программы. Описание реализации технологии COM, динамических библиотек, возможностей программы.

    курсовая работа [4,3 M], добавлен 14.11.2010

  • Описание принципа работы генетического алгоритма, проверка его работы на функции согласно варианту на основе готовой программы. Основные параметры генетического алгоритма, его структура и содержание. Способы реализации алгоритма и его компонентов.

    лабораторная работа [20,2 K], добавлен 03.12.2014

  • Назначение программного средства и основные требования к нему. Построение математической модели для интегрирования функции с использованием степенных рядов. Разработка модульной структуры программы, описание процедур и функций, формирование алгоритма.

    курсовая работа [1,7 M], добавлен 05.11.2013

  • Применение нейрокомпьютеров на российском финансовом рынке. Прогнозирование временных рядов на основе нейросетевых методов обработки. Определение курсов облигаций и акций предприятий. Применение нейронных сетей к задачам анализа биржевой деятельности.

    курсовая работа [527,2 K], добавлен 28.05.2009

  • Защита информации и ее сжатие. Поиск, распознавание информационных объектов (текста и образов). Роль ключа в шифровании. Прогнозирование временных рядов. Классификация документов, выбор и оценка многокритериальных альтернатив. Принятие решений и вывод.

    реферат [140,1 K], добавлен 19.10.2008

  • Краткая характеристика PI System и контура управления tic-104. Анализ и планирование требований к модулю tic-104. Проектирование модуля tic-104. Внедрение модуля в приложение PI ProcessBook. Доступ к данным временных рядов PI. Модульная база данных.

    курсовая работа [38,1 K], добавлен 09.05.2011

  • Определения "ряд" и "сумма ряда". Свойства и сходимость сумм числового ряда. Основные методики приближенного нахождения суммы бесконечных рядов. Методы расчета сумм числовых рядов и формулы суммирования. Особенности разложения по специальным функциям.

    курсовая работа [1,3 M], добавлен 09.01.2017

  • Работа в Pascal, теория рядов. Главные признаки сходимости знакоположительных рядов. Общее понятие о ряде Тейлора. Вычисление конечной суммы факториального ряда для заданного массива значений. Исходный текст программы. Результаты выполнения программы.

    контрольная работа [1,6 M], добавлен 06.08.2013

  • Инициализация переменных архитектурным элементам микропроцессора КР580ВМ80А и портам ввода-вывода в общем алгоритме. Составление карты памяти микропроцессорной системы для реализации программы. Анализ соответствия временных и точностных характеристик.

    курсовая работа [217,6 K], добавлен 27.11.2012

  • Этапы работы генетического алгоритма, область его применения. Структура данных, генерация первоначальной популяции. Алгоритм кроссинговера - поиск локальных оптимумов. Селекция особей в популяции. Техническое описание программы и руководство пользователя.

    реферат [1014,2 K], добавлен 14.01.2016

  • Общая структура микропроцессора. Жизненный цикл программного обеспечения. Проектирование схемы операционного блока, создание временных диаграмм с использованием средств Microsoft Office и в среде OrCAD. Разработка алгоритма хранения значений констант.

    курсовая работа [839,5 K], добавлен 24.07.2013

  • Определение и описание "генетического алгоритма", идея которого состоит в организации эволюционного процесса, конечной целью которого является получение оптимального решения в сложной комбинаторной задаче. Пример его тривиальной реализации на C++.

    контрольная работа [172,1 K], добавлен 24.05.2010

  • Операторы генетического алгоритма. Пример простейшей программы. Процесс генерации и накопления информации о выживании и продолжении рода в ряде поколений популяции. Программа, реализующая простой генетический алгоритм для нахождения минимума функции.

    курсовая работа [39,3 K], добавлен 29.10.2012

  • Построение математической модели, описывающей движение тела. Составление алгоритма расчёта и визуализации временных диаграмм скорости, пути и движущей силы. Листинг программы, реализующей представленный алгоритм расчёта и построение графиков V, S и F.

    контрольная работа [102,4 K], добавлен 05.11.2012

  • Программа реализации генетического алгоритма, использование визуальной среды программирования. Руководство пользователя, листинг программы. Возможность ввода параметров: объем популяции, число поколений, коэффициент скрещивания и мутации, число городов.

    курсовая работа [2,9 M], добавлен 20.08.2009

  • Описание генетических алгоритмов. Применение генетического алгоритма для решения задачи коммивояжера. Постановка задачи безусловной оптимизации. Изучение распространения генетических алгоритмов на модель с несколькими взаимодействующими популяциями.

    дипломная работа [979,1 K], добавлен 30.05.2015

  • Характеристика методов нечеткого моделирования и изучение системы кластеризации в пакетах прикладных программ. Разработка и реализация алгоритма для оптимизации базы правил нечеткого классификатора с помощью генетического алгоритма аппроксимации функции.

    дипломная работа [1,9 M], добавлен 21.06.2014

  • Запись результатов измерений в память микроконтроллера. Определение времени измерения и расчет погрешностей системы. Обоснование алгоритма сбора измерительной информации и метода ее обработки. Разработка временных диаграмм, отражающих работу системы.

    курсовая работа [1,6 M], добавлен 18.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.