Особенности адаптивного увеличения размерности пространства признаков
Разделимость описаний объектов из разных классов - метод успешного решения задачи классификации. Применение эволюционного подхода для преобразования входного пространства признаков с целью повышения вероятности обучения искусственной нейронной сети.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | русский |
Дата добавления | 19.01.2018 |
Размер файла | 17,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Математическая модель искусственной нейронной сети. Структура многослойного персептрона. Обучение без учителя, методом соревнования. Правило коррекции по ошибке. Метод Хэбба. Генетический алгоритм. Применение нейронных сетей для синтеза регуляторов.
дипломная работа [1,5 M], добавлен 17.09.2013Разработка алгоритма и программы для распознавания пола по фотографии с использованием искусственной нейронной сети. Создание алгоритмов: математического, работы с приложением, установки весов, реализации функции активации и обучения нейронной сети.
курсовая работа [1,0 M], добавлен 05.01.2013Обучение простейшей и многослойной искусственной нейронной сети. Метод обучения перцептрона по принципу градиентного спуска по поверхности ошибки. Реализация в программном продукте NeuroPro 0.25. Использование алгоритма обратного распространения ошибки.
курсовая работа [1019,5 K], добавлен 05.05.2015Описание структурной схемы искусственного нейрона. Характеристика искусственной нейронной сети как математической модели и устройств параллельных вычислений на основе микропроцессоров. Применение нейронной сети для распознавания образов и сжатия данных.
презентация [387,5 K], добавлен 11.12.2015Разработка приложения, целью которого ставится преобразование черно-белых полутоновых изображений в цветные. Обзор методики обработки изображения, способов преобразования изображения с помощью нейронной сети. Описания кластеризации цветового пространства.
дипломная работа [6,3 M], добавлен 17.06.2012Моделирование пространства и способы представления пространственных объектов. Хранение и извлечение пространственных объектов. Применение географических баз данных. Классификация объектов на основе размерности. Мозаичное и векторное представление.
презентация [179,5 K], добавлен 11.10.2013Различные методы решения задачи классификации. Нейросетевые парадигмы, методы обучения нейронных сетей, возникающие при этом проблемы и пути их решения. Описание программной реализации классификатора, его функциональные возможности и результаты обучения.
дипломная работа [1,0 M], добавлен 28.12.2015Механизм работы нервной системы и мозга человека. Схема биологического нейрона и его математическая модель. Принцип работы искусственной нейронной сети, этапы ее построения и обучения. Применение нейронных сетей в интеллектуальных системах управления.
презентация [98,6 K], добавлен 16.10.2013Выявление закономерностей и свойств, применимых в искусственной нейронной сети. Построение графиков и диаграмм, определяющих степень удаленности между объектами. Моделирование, тестирование и отладка программной модели, использующей клеточный автомат.
дипломная работа [4,1 M], добавлен 25.02.2015Изучение сути искусственных нейронных сетей. Векторные пространства. Матрицы и линейные преобразования векторов. Биологический нейрон и его кибернетическая модель. Теорема об обучении персептрона. Линейная разделимость и персептронная представляемость.
курсовая работа [239,7 K], добавлен 06.06.2012Прогнозирование валютных курсов с использованием искусственной нейронной сети. Общая характеристика среды программирования Delphi 7. Существующие методы прогнозирования. Характеристика нечетких нейронных сетей. Инструкция по работе с программой.
курсовая работа [2,2 M], добавлен 12.11.2010Математическая модель нейронной сети. Однослойный и многослойный персептрон, рекуррентные сети. Обучение нейронных сетей с учителем и без него. Алгоритм обратного распространения ошибки. Подготовка данных, схема системы сети с динамическим объектом.
дипломная работа [2,6 M], добавлен 23.09.2013Изучение и реализация системы, использующей возможности Microsoft Azure для распределенного обучения нейронной сети. Рассмотрение функционирования распределенных вычислений. Выбор задачи для исследования; тестирование данного программного ресурса.
дипломная работа [2,0 M], добавлен 20.07.2015Этап предварительной обработки данных, классификации, принятия решения. Изображения обучающих рукописных символов, тестового символа. Выход нейронной сети для тестового символа. График тренировки нейронной сети. Последовательность точек. Входные вектора.
статья [245,7 K], добавлен 29.09.2008Понятие арифметического точечного пространства. Различные виды плоскостей в пространстве. Общая задача оптимизации. Геометрия задачи линейного программирования. Графический метод решения задачи линейного программирования при малом количестве переменных.
курсовая работа [756,9 K], добавлен 29.05.2014Нейронные сети и оценка возможности их применения к распознаванию подвижных объектов. Обучение нейронной сети распознаванию вращающегося трехмерного объекта. Задача управления огнем самолета по самолету. Оценка экономической эффективности программы.
дипломная работа [2,4 M], добавлен 07.02.2013Базовые архитектуры компьютеров: последовательная обработка символов по заданной программе и параллельное распознавание образов по обучающим примерам. Искусственные нейронные сети. Прототип для создания нейрона. Поведение искусственной нейронной сети.
контрольная работа [229,5 K], добавлен 28.05.2010Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.
лабораторная работа [1,1 M], добавлен 05.10.2010Этапы решения задачи классификации цифр арабского алфавита на основе нейронных сетей: выбор класса, структуры и пакета нейронной сети, ее обучение, требования к информационной и программной совместимости, составу и параметрам технических средств.
реферат [111,6 K], добавлен 19.10.2010Проблема гидроакустической классификации целей как актуальная проблема современной гидроакустики. Применение нейросетевых алгоритмов и отдельных парадигм для решения научно-технических задач. Выбор структуры нейронной сети для распознавания изображений.
реферат [284,2 K], добавлен 04.05.2012