Системный анализ и моделирование в машиностроении
Исследование нелинейного уравнения с одной переменной, определение экстремальных значений функции (Fmax и Fmin) и соответствующих им значений аргументов. Отделение и уточнение унимодальных функций. Основы теории графов и построение экономического дерева.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | лабораторная работа |
Язык | русский |
Дата добавления | 06.11.2017 |
Размер файла | 855,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
«Национальный исследовательский томский политехнический университет»
Институт - Кибернетики
Кафедра - ТАМП
Лабораторная работа
На тему: «Системный анализ и моделирование в машиностроении»
Выполнил: студент гр. 8ЛМ41 Пергунов В.И.
Проверил доцент, к.т.н., Боголюбова М.Н.
Томск - 2015
Содержание
1. Исследование нелинейного уравнения с одной переменной
2. Решение нелинейного уравнения со многими переменными
3. Линейное программирование
4. Основы теории графов
1. Исследование нелинейного уравнения с одной переменной
Исследование заключается в нахождении корней нелинейного уравнения, определения экстремальных значений функции (Fmax и Fmin) и соответствующих им значений аргументов.
Исследование необходимо выполнять в следующей последовательности:
1. Построить график функции на экране дисплея в интервале, указанном в таблице. Если интервал не указан, то исследовать функцию в пределах
-10 < x< 10 или выбрать пределы изменения x самостоятельно.
2. Выполнить отделение корней заданного уравнения.
3.Вычислить корни заданного уравнения с использованием метода половинного деления. Вычисление произвести с точностью до 10-6.
4. Выполнить отделение унимодальных функций.
5. Уточнить значение функции и аргумента в экстремальных точках заданной функции с помощью метода золотого сечения.
1. Решение нелинейного уравнения с одной переменной.
Отделение корней
Уточнение корней
Отделение унимодальных функций
Уточнение унимодальных функций
Минимальное значение функции F(x)=-14,699237, x= -4,700004,
максимальное значение функции F(x)=14,758872, x= -4,80000.
2. Решение нелинейного уравнения со многими переменными
3. Линейное программирование
Для изготовления n видов продукции Р1,..,Рn предприятие использует т видов ресурсов S1,.., Sm(сырье, топливо, материалы, инструмент и т. п.). Запасы ресурсов каждого вида ограничены и равны b1,..,bт. На изготовление единицы продукции j-го вида (j=1,..,m) расходуется aij единиц i-го ресурса (i = 1,..,n). При реализации единицы j-й продукции предприятие получает Cj единиц прибыли. Необходимо составить такой план выпуска продукции, чтобы при ее реализации получить максимальную прибыль.
Задача об использовании ресурсов.
Решение:
Fmax=84
X1=5
X2=0
X3=9
Строительной организации необходимо выполнить n видов земляных работ, объем которых составляет Vj куб. м (j=1… n). Для их осуществления можно использовать m механизмов. Производительность i-го механизма при выполнении j-ой работы составляет Pij куб. м в час., а себестоимость одного часа работы Sij руб. Плановый фонд рабочего времени i-го механизма составляет Ti часов.
Составить план организации работ, обеспечивающий его выполнение с минимальными затратами.
нелинейный экстремальный аргумент унимодальный
4. Основы теории графов
Построение экономического дерева:
Размещено на Allbest.ru
Подобные документы
Решение нелинейного уравнения. Отделение корней - исследование количества, характера и расположения корней, нахождение их приближенных значений. Уточнение корня до заданной степени точности. Численное интегрирование и квадратурные формулы прямоугольников.
курсовая работа [51,9 K], добавлен 04.02.2009Расчет и построение таблицы значений функции (протабулирование функции) при различных значениях аргумента. Нахождение наибольшего и наименьшего значений функции на отрезке и построение графика. Рабочий лист Excel в режимах отображения значений и формул.
контрольная работа [30,0 K], добавлен 27.05.2010Этапы численного решения нелинейных уравнений заданного вида: отделение (изоляция, локализация) корней уравнения аналитическим или графическим способами, уточнение конкретного выделенного корня методом касательных (Ньютона). Решение в системе MathCad.
курсовая работа [271,6 K], добавлен 22.08.2012Решение дифференциального уравнения N-го порядка методом интегрирования при помощи характеристического уравнения, методом интегрирования и операторным методом для значений аргументов при заданных начальных условиях и нулевых уравнения 4–го порядка.
практическая работа [806,9 K], добавлен 05.12.2009Отделение действительных корней нелинейного уравнения. Метод хорд и касательных (Ньютона), геометрическая интерпретация. Графическая схема алгоритма. Описание реализации базовой модели в MathCAD. График сравнения числа итераций в зависимости от точности.
курсовая работа [2,0 M], добавлен 16.05.2013Программный продукт, способный решать уравнения с одной переменной методом Ньютона (касательных). Он прост в эксплуатации, имеет интуитивно понятный интерфейс, выстраивает график уравнения, что очень важно для пользователя. Реализация решений в программе.
курсовая работа [169,3 K], добавлен 29.01.2009Сфера применения имитационного моделирования. Исследование и специфика моделирования системы массового обслуживания с расчетом стационарных значений системы и контролем погрешности получаемых значений. Реализация ее в GPSS и на языке высокого уровня Java.
курсовая работа [818,7 K], добавлен 23.05.2013Основы теории численной оптимизации переменной метрики. Создание модуля, содержащего реализацию методов переменной метрики (метод Бройдена, метод Дэвидона – Флетчера – Пауэлла), практическая реализация программы для работы с исследуемым модулем.
курсовая работа [308,0 K], добавлен 17.03.2013Решение нелинейного уравнения: отделение корней и уточнение корня по методу хорда. Численное интегрирование: метод входящих прямоугольников. Вычисление площади криволинейной трапеции с разбивками. Решение примера методом интегрирования по частям.
курсовая работа [197,9 K], добавлен 20.01.2009Разработка различных программ для вычисления X и Y по формуле, для вычисления интеграла, для вычисления таблицы значений функции и для вычисления элементов вектора. Составление блок-схемы программы. Ввод значений, описание переменных и условия расчета.
контрольная работа [148,1 K], добавлен 08.11.2013